920 resultados para Osteoblast proliferation
Resumo:
Enterprise Systems (ES) provide standardized, off-theshelf support for operations and management within organizations. With the advent of ES based on a serviceoriented architecture (SOA) and an increasing demand of IT-supported interorganizational collaboration, implementation projects face paradigmatically new challenges. The configuration of ES is costly and error-prone. Dependencies between business processes and business documents are hardly explicit and foster component proliferation instead of reuse. Configurative modeling can support the problem in two ways: First, conceptual modeling abstracts from technical details and provides more intuitive access and overview. Second, configuration allows the projection of variants from master models providing manageable variants with controlled flexibility. We aim at tackling the problem by proposing an integrated model-based framework for configuring both, processes and business documents, on an equal basis; as together, they constitute the core business components of an ES.
Resumo:
Mesenchymal stem cells (MSCs) are multi-potent cells that can differentiate into various cell types and have been used widely in tissue engineering application. In tissue engineering, a scaffold, MSCs and growth factors are used as essential components and their interactions have been regarded to be important for regeneration of tissues. A critical problem for MSCs in tissue engineering is their low survival ability and functionality. Most MSCs are going to be apoptotic after transplantation. Therefore, increasing MSC survival ability and functionalities is the key for potential applications of MSCs. Several approaches have been studied to increase MSC tissue forming capacity including application of growth factors, overexpression of stem cell regulatory genes and improvement of biomaterials for scaffolds. The effects of these approaches on MSCs have been associated with the activation of the PI3K/Akt signaling pathway. The pathway plays central regulatory roles in MSC survival, proliferation, migration, angiogenesis, cytokine production and differentiation. In this review, we summarize and discuss the literatures related to the roles of the PI3K/Akt pathway in the functionalities of MSCs and the involvement of the pathway in biomaterials-increased MSC functinalities. Biomaterials have been modified in their properties, surface structure and loaded with growth factors to increase MSC functionalities. Several studies demonstrated that the biomaterials-increased MSC functionalities are mediated by the activation of the PI3K/Akt pathway.
Resumo:
The mechanical conditions in the repair tissues are known to influence the outcome of fracture healing. These mechanical conditions are determined by the stiffness of fixation and limb loading. Experimental studies have shown that there is a range of beneficial fixation stiffness for timely healing and that fixation stiffness that is either too flexible or too stiff impairs callus healing. However, much less is known about how mechanical conditions influence the biological processes that make up the sequence of bone repair and if indeed mechanical stimulation is required at all stages of repair. Secondary bone healing occurs through a sequence of events broadly characterised by inflammation, proliferation, consolidation and remodelling. It is our hypothesis that a change in fixation stiffness from very flexible to stiff can shorten the time to healing relative to constant fixation stiffness. Flexible fixation has the benefit of promoting greater callus formation and needs to be applied during the proliferative stage of repair. The greater callus size helps to stabilize the fragments earlier allowing mineralization to occur faster. Together with stable/rigid fixation applied during the latter stage of repair to ensure mineralization of the callus. The predicted benefits of inverse dynamization are shortened healing in comparison to very flexible fixation and healing time comparable or faster than stable fixation with greater callus stiffness.
Resumo:
The impacts of online collaboration and networking among consumers on social media (SM) websites which are featuring user generated content in a form of product reviews, ratings and recommendations (PRRR) as an emerging information source is the focus of this research. The proliferation of websites where consumers are able to post the PRRR and share them with other consumers has altered the marketing environment in which companies, marketers and advertisers operate. This cross-sectional study explored consumers’ attitudes and behaviour toward various information sources (IS), used in the information search phase of the purchasing decision-making process. The study was conducted among 300 international consumers. The results were showing that personal and public IS were far more reliable than commercial. The findings indicate that traditional marketing tools are no longer viable in the SM milieu.
Resumo:
The reason why a sustained high concentration of insulin induces laminitis in horses remains unclear. Cell proliferation occurs in the lamellae during insulin-induced laminitis and in other species high concentrations of insulin can activate receptors for the powerful cell mitogen, insulin-like growth factor (IGF)-1. The first aim of this study was to determine if IGF-1 receptors (IGF-1R) are activated in the hoof during insulin-induced laminitis. Gene expression for IGF-1R and the insulin receptor (InsR) was measured using qRT-PCR, in lamellar tissue from control horses and from horses undergoing a prolonged euglycaemic, hyperinsulinaemic clamp (p-EHC), during the mid-developmental (24 h) and acute (46 h) phases of insulin-induced laminitis. Gene expression for both receptors was decreased 13–32-fold (P < 0.05) at both time-points in the insulin-treated horses. A second aim was to determine if the down-regulation of the receptor genes could be accounted for by an increase in circulating IGF-1. Serum IGF-1 was measured at 0, 10, 25 and 46 h post-treatment in horses given a p-EHC for approximately 46 h, and in matched controls administered a balanced, electrolyte solution. There was no increase in serum IGF-1 concentrations during the p-EHC, consistent with down-regulation of both receptors by insulin. Stimulation of the IGF-1R by insulin may lead to inappropriate lamellar epidermal cell proliferation and lamellar weakening, a potential mechanism for hyperinsulinaemic laminitis. Targeting this receptor may provide insights into the pathogenesis or identify a novel therapy for hyperinsulinaemic laminitis.