993 resultados para Organic mineral
Resumo:
We highlight our recent experimental work on an efficient molecular nonlinear optical crystal, 3-methoxy 4-hydroxy benzaldehyde (MHBA). Optical quality single crystals of MHBA were grown from mixtures of solvents and from melt. The overall absorption and transparency window were improved by growing them in a mixture of chloroform and acetone. The grown crystals were characterized for their optical transmission, mechanical hardness and laser damage. We have observed a strong correlation between mechanical properties and laser induced damage.
Resumo:
The design of compounds with novel and improved physico-chemical properties as advanced functional materials with a specific application spectrum requires the knowledge about possible supramolecular packing motifs and their experimental control in crystalline lattice. Besides the structure of the individual molecule, non-covalent interactions play a significant role in the determination of molecular conformation, along with the formation of three-dimensional supramolecular architecture in a crystal as a requirement for molecular recognition processes, and the related bioactivity. Involvement of functional groups will contribute to the formation of a predefined packing motif due to their well-defined interactions. The strength and directionality of these interactions create characteristic packing motifs, which can be used for the design of supramolecular arrangements by the development of appropriate strategies for the precise control of their topology. Most relevant of these non-covalent interactions are stacking interactions and hydrogen bonds, which have been subjects of extensive study in the last two decades. In recent literature, substantial efforts have been put in by various researchers towards the understanding of interactions involving organic fluorine and the role they play in generating different packing motifs which guides assembling of molecules in the crystal lattice.
Resumo:
The recent development of several organic materials with large nonlinear susceptibilities, high damage threshold and low melting points encouraged researchers to employ these materials in fiber form to efficiently couple diode laser pumps and obtain enhanced second harmonic generation (SHG). In this paper we report the growth of single crystal cored fibers of 4-nitro-4'-methylbenzylidene aniline, ethoxy methoxy chalcone and (-)2-((alpha) -methylbenzylamino)-5- nitropyridine by inverted Bridgman-Stockbarger technique. The fibers were grown in glass capillaries with varying internal diameters and lengths and were characterized using x-ray and polarizing microscope techniques. The propagation loss at 632.8 nm and 1300 nm were measured and SHG was studied using 1064 nm pump.
Resumo:
Polypyrrole exhibits reversible changes in their direct current resistance on exposure to organic volatiles. However, one needs to employ an array of such sensors to discriminate organic volatiles present in a mixture. Hence, polypyrrole based gas sensor is designed for the detection and discrimination of different organic volatiles. Multi frequency impedance measurement technique is used to detect the organic vapors, such as acetone, ethanol and Isopropyl alcohol, in the gas phase, over a frequency range 10 Hz to 2 MHz. The sensor response is monitored by measuring the changes in its capacitance, resistance and the dissipation factor upon exposure to organic volatiles. It is observed that the capacitive property of the sensor is more sensitive to these volatiles than its resistive property. Each volatile responds to the sensor in terms of dissipation factor at specific frequency and found that the peak magnitude has a linear relationship with their concentrations.
Resumo:
Diisopropoxytitanium(III) tetrahydroborate, ((PrO)-Pr-1)(2)TiBH4), generated in situ in dichloromethane from diisopropoxytitanium dichloride and benzyltriethylammonium borohydride in a 1:2 ratio selectively reduces aldehydes, ketones, acid chlorides, carboxylic acids, and N-Boc-protected amino acids to the corresponding alcohols in excellent yield under very mild reaction conditions (-78 to 25 degrees C).
Resumo:
Woolley's revolutionary proposal that quantum mechanics does not sanction the concept of ''molecular structure'' - which is but only a ''metaphor'' - has fundamental implications for physical organic chemistry. On the one hand, the Uncertainty Principle limits the precision with which transition state structures may be defined; on the other, extension of the structure concept to the transition state may be unviable. Attempts to define transition states have indeed caused controversy. Consequences for molecular recognition, and a mechanistic classification, are also discussed.
Resumo:
Second-order nonlinearities (beta) of five weak organic acids in protic solvents have been measured by the double-quantum Rayleigh scattering (DRS) technique. beta is found to bear a linear relationship to the pK(a) of these compounds in those solvents. A direct implication of this observation is that the DRS technique can be used to determine the pK(a) of weak organic acids in any solvent.
Resumo:
The principle of microscopic reversibility is one of the few generalising principles used in organic chemistry which have their roots in the fundamental laws of thermodynamics. It has, therefore, been highly popular. However, although the principle has some important uses, its general application is not without pitfalls. The principle is easy to misunderstand and to misapply: indeed, some of its formulations are semantically dubious. The principle is most dangerous when used as a charm, for it is more subtle than some of its formulations suggest. But above all, the principle may not be used for deducing or disproving the mechanism of a reaction, except when the mechanism in the reverse direction is known independently. For, such use is, perhaps, the deadliest misapplication.
Resumo:
Electrochemical precipitation of cobalt(II) hydroxide from nitrate solutions containing organic molecules, such as glucose, fructose, lactose, glycerol, and citric acid, yields a new modification of cobalt (II) hydroxide (a = 3.09 +/- 0.03 Angstrom, c = 23.34 +/- 0.36 Angstrom) that is isostructural with cu-nickel hydroxide; precipitation in the absence of organic additives gives the stable, brucite-like, beta-CO (OH)(2). (C) 1995 Academic Press, Inc.
Resumo:
An interesting reductive dimerization of organic thiocyanates assisted by benzyltriethylammonium tetrathiomolybdate, [(PhCH(2)NEt(3))(2)MoS4], 1, leads to the formation of the corresponding disulfides in high yields.
Resumo:
The first hyperpolarizabilities (beta) of some weak aromatic organic acids have been measured in protic solvents by the hyper-Rayleigh scattering (HRS) technique at low concentrations. The measured hyperpolarizability (beta(m)) varies between the two extreme limits: the hyperpolarizability of the acid form (beta(HA)) at the lower side and that of the basic form (beta(A-)) at the higher side. The degree of dissociation (alpha) of the acid in a solvent is related to the measured hyperpolarizability, beta(m), by the following relationship: beta(m)(2)=(1-alpha)beta(HA)(2)+alpha beta(A-)(2). The calculated beta's including solvent effects in terms of an Onsager field do not reproduce the experimentally measured hyperpolarizabilities. Other solvent-induced effects like hydrogen bonding and van der Waals interactions seem to influence the first hyperpolarizability and, thus, indirectly the extent of dissociation of these weak acids in these protic solvents.
Resumo:
Several substituted anilines were converted to binary salts with L-tartaric acid. Second harmonic generation (SHG) activities of these salts were determined. The crystal packing in two structures, (i) m-anisidinium-L-tartrate monohydrate (i) and (ii) p-toluidinium-L-tartrate (2), studied using X-ray diffraction demonstrates that extensive hydrogen bonding steers the components into a framework which has a direct bearing on the SHG activity