980 resultados para Optical Flow Tracking
Resumo:
Like numerous torrents in mountainous regions, the Illgraben creek (canton of Wallis, SW Switzerland) produces almost every year several debris flows. The total area of the active catchment is only 4.7 km², but large events ranging from 50'000 to 400'000 m³ are common (Zimmermann 2000). Consequently, the pathway of the main channel often changes suddenly. One single event can for instance fill the whole river bed and dig new several-meters-deep channels somewhere else (Bardou et al. 2003). The quantification of both, the rhythm and the magnitude of these changes, is very important to assess the variability of the bed's cross section and long profile. These parameters are indispensable for numerical modelling, as they should be considered as initial conditions. To monitor the channel evolution an Optech ILRIS 3D terrestrial laser scanner (LIDAR) was used. LIDAR permits to make a complete high precision 3D model of the channel and its surroundings by scanning it from different view points. The 3D data are treated and interpreted with the software Polyworks from Innovmetric Software Inc. Sequential 3D models allow for the determination of the variation in the bed's cross section and long profile. These data will afterwards be used to quantify the erosion and the deposition in the torrent reaches. To complete the chronological evolution of the landforms, precise digital terrain models, obtained by high resolution photogrammetry based on old aerial photographs, will be used. A 500 m long section of the Illgraben channel was scanned on 18th of August 2005 and on 7th of April 2006. These two data sets permit identifying the changes of the channel that occurred during the winter season. An upcoming scanning campaign in September 2006 will allow for the determination of the changes during this summer. Preliminary results show huge variations in the pathway of the Illgraben channel, as well as important vertical and lateral erosion of the river bed. Here we present the results of a river bank on the left (north-western) flank of the channel (Figure 1). For the August 2005 model the scans from 3 viewpoints were superposed, whereas the April 2006 3D image was obtained by combining 5 separate scans. The bank was eroded. The bank got eroded essentially on its left part (up to 6.3 m), where it is hit by the river and the debris flows (Figures 2 and 3). A debris cone has also formed (Figure 3), which suggests that a part of the bank erosion is due to shallow landslides. They probably occur when the river erosion creates an undercut slope. These geometrical data allow for the monitoring of the alluvial dynamics (i.e. aggradation and degradation) on different time scales and the influence of debris flows occurrence on these changes. Finally, the resistance against erosion of the bed's cross section and long profile will be analysed to assess the variability of these two key parameters. This information may then be used in debris flow simulation.
Resumo:
Perfusion CT studies of regional cerebral blood flow (rCBF), involving sequential acquisition of cerebral CT sections during IV contrast material administration, have classically been reported to be achieved at 120 kVp. We hypothesized that using 80 kVp should result in the same image quality while significantly lowering the patient's radiation dose, and we evaluated this assumption. In five patients undergoing cerebral CT survey, one section level was imaged at 120 kVp and 80 kVp, before and after IV administration of iodinated contrast material. These four cerebral CT sections obtained in each patient were analyzed with special interest to contrast, noise, and radiation dose. Contrast enhancement at 80 kVp is significantly increased (P < .001), as well as contrast between gray matter and white matter after contrast enhancement (P < .001). Mean noise at 80 kVp is not statistically different (P = .042). Finally, performance of perfusion CT studies at 80 kVp, keeping mAs constant, lowers the radiation dose by a factor of 2.8. We, thus, conclude that 80 kVp acquisition of perfusion CT studies of rCBF will result in increased contrast enhancement and should improve rCBF analysis, with a reduced patient's irradiation.
Resumo:
PURPOSE: To determine the relationship between carotid intima-media thickness (IMT), coronary artery calcification (CAC), and myocardial blood flow (MBF) at rest and during vasomotor stress in type 2 diabetes mellitus (DM). METHODS: In 68 individuals, carotid IMT was measured using high-resolution vascular ultrasound, while the presence of CAC was determined with electron beam tomography (EBT). Global and regional MBF was determined in milliliters per gram per minute with (13)N-ammonia and positron emission tomography (PET) at rest, during cold pressor testing (CPT), and during adenosine (ADO) stimulation. RESULTS: There was neither a relationship between carotid IMT and CAC (r = 0.10, p = 0.32) nor between carotid IMT and coronary circulatory function in response to CPT and during ADO (r = -0.18, p = 0.25 and r = 0.10, p = 0.54, respectively). In 33 individuals, EBT detected CAC with a mean Agatston-derived calcium score of 44 +/- 18. There was a significant difference in regional MBFs between territories with and without CAC at rest and during ADO-stimulated hyperemia (0.69 +/- 0.24 vs. 0.74 +/- 0.23 and 1.82 +/- 0.50 vs. 1.95 +/- 0.51 ml/g/min; p < or = 0.05, respectively) and also during CPT in DM but less pronounced (0.81 +/- 0.24 vs. 0.83 +/- 0.23 ml/g/min; p = ns). The increase in CAC was paralleled with a progressive regional decrease in resting as well as in CPT- and ADO-related MBFs (r = -0.36, p < or = 0.014; r = -0.46, p < or = 0.007; and r = -0.33, p < or = 0.041, respectively). CONCLUSIONS: The absence of any correlation between carotid IMT and coronary circulatory function in type 2 DM suggests different features and stages of early atherosclerosis in the peripheral and coronary circulation. PET-measured MBF heterogeneity at rest and during vasomotor stress may reflect downstream fluid dynamic effects of coronary artery disease (CAD)-related early structural alterations of the arterial wall.
Resumo:
Nonlinear optical nanocrystals have been recently introduced as a promising alternative to fluorescent probes for multiphoton microscopy. We present for the first time a complete survey of the properties of five nanomaterials (KNbO(3), LiNbO(3), BaTiO(3), KTP, and ZnO), describing their preparation and stabilization and providing quantitative estimations of their nonlinear optical response. In the light of their prospective use as biological and clinical markers, we assess their biocompatibility on human healthy and cancerous cell lines. Finally, we demonstrate the great potential for cell imaging of these inherently nonlinear probes in terms of optical contrast, wavelength flexibility, and signal photostability.
Resumo:
We previously reported that nuclear grade assignment of prostate carcinomas is subject to a cognitive bias induced by the tumor architecture. Here, we asked whether this bias is mediated by the non-conscious selection of nuclei that "match the expectation" induced by the inadvertent glance at the tumor architecture. 20 pathologists were asked to grade nuclei in high power fields of 20 prostate carcinomas displayed on a computer screen. Unknown to the pathologists, each carcinoma was shown twice, once before a background of a low grade, tubule-rich carcinoma and once before the background of a high grade, solid carcinoma. Eye tracking allowed to identify which nuclei the pathologists fixated during the 8 second projection period. For all 20 pathologists, nuclear grade assignment was significantly biased by tumor architecture. Pathologists tended to fixate on bigger, darker, and more irregular nuclei when those were projected before kigh grade, solid carcinomas than before low grade, tubule-rich carcinomas (and vice versa). However, the morphometric differences of the selected nuclei accounted for only 11% of the architecture-induced bias, suggesting that it can only to a small part be explained by the unconscious fixation on nuclei that "match the expectation". In conclusion, selection of « matching nuclei » represents an unconscious effort to vindicate the gravitation of nuclear grades towards the tumor architecture.
Resumo:
Les maladies cardiovasculaires restent la cause de mortalité la plus élevée dans le monde occidental. Il s'agit d'un processus long et complexe, dont l'infarctus du myocarde et la mort cardiaque ne sont que la fin d'un spectrum. La perfusion myocardique joue un rôle central dans l'évolution de la maladie et survient chronologiquement en amont de la dysfonction diastolique et systolique, ainsi que de l'infarctus du myocarde. Une meilleure compréhension de la Physiopathologie sous-jacente est cruciale dans le diagnostique et la prise en charge du patient. Dans ce sens, ce travail tente d'évaluer l'apport de l'évaluation de la perfusion myocardique évaluée par la tomographic à émission de positron (PET/CT) quant à la prédiction d'événements cardiovasculaires. De plus, l'apport de l'évaluation quantitative par rapport à l'évaluation qualitative a été démontré dans ce travail. Nous avons utilisé un radiotraceur unique au regard de ses caractéristiques. En effet, Le Rubidium-82 est un traceur qui ne nécessite pas d'un cyclotron pour sa fabrication, dès lors qu'il est produit par un générateur, rendant ainsi sa disponibilité un atout et un avantage potentiel lors de futurs implémentations à plus grande échelle. Ce travail démontre la supériorité de l'analyse de perfusion myocardique quantitative par rapport à l'analyse traditionnelle qualitative, ce qui n'était pas encore confirmé avec le Rubidium-82. Les résultats montrent une démarcation significative entre les différentes valeurs de perfusion quantitative/absolue, permettant de distinguer différentes populations plus ou moins à risque en terme de prédiction d'événements cardiaques futurs. Il est intéressant de noter que dans un modèle combinant l'analyse qualitative et quantitative proposé dans ce travail, l'inclusion des résultats les plus ischémiques obtenus par l'analyse qualitative avec les résultats de perfusion les plus bas en terme de flux myocardique absolu (analyse quantitative) démarque une population à très bas risque d'événements cardiovasculaires majeurs, une prédiction pouvant être observée surplus de 1'000 jours. Ces résultats forment un ajout significatif quant à l'évaluation de la perfusion myocardique par la médecine nucléaire, notamment par ce model intégratif proposé, lequel permet une prédiction précise et contributive dans le cadre de futurs événements cardiovasculaires majeurs.
Resumo:
A general reduced dimensionality finite field nuclear relaxation method for calculating vibrational nonlinear optical properties of molecules with large contributions due to anharmonic motions is introduced. In an initial application to the umbrella (inversion) motion of NH3 it is found that difficulties associated with a conventional single well treatment are overcome and that the particular definition of the inversion coordinate is not important. Future applications are described
Resumo:
Three conjugated organic molecules that span a range of polarity and valence-bond/charge transfer characteristics were studied. It was found that dispersion can be insignificant, and that adequate treatment can be achieved with frequency-dependent field-induced vibrational coordinates (FD-FICs)
Resumo:
Electrical property derivative expressions are presented for the nuclear relaxation contribution to static and dynamic (infinite frequency approximation) nonlinear optical properties. For CF4 and SF6, as opposed to HF and CH4, a term that is quadratic in the vibrational anharmonicity (and not previously evaluated for any molecule) makes an important contribution to the static second vibrational hyperpolarizability of CF4 and SF6. A comparison between calculated and experimental values for the difference between the (anisotropic) Kerr effect and electric field induced second-harmonic generation shows that, at the Hartree-Fock level, the nuclear relaxation/infinite frequency approximation gives the correct trend (in the series CH4, CF4, SF6) but is of the order of 50% too small
Resumo:
The vibrational configuration interaction method used to obtain static vibrational (hyper)polarizabilities is extended to dynamic nonlinear optical properties in the infinite optical frequency approximation. Illustrative calculations are carried out on H2 O and N H3. The former molecule is weakly anharmonic while the latter contains a strongly anharmonic umbrella mode. The effect on vibrational (hyper)polarizabilities due to various truncations of the potential energy and property surfaces involved in the calculation are examined
Resumo:
A variational approach for reliably calculating vibrational linear and nonlinear optical properties of molecules with large electrical and/or mechanical anharmonicity is introduced. This approach utilizes a self-consistent solution of the vibrational Schrödinger equation for the complete field-dependent potential-energy surface and, then, adds higher-level vibrational correlation corrections as desired. An initial application is made to static properties for three molecules of widely varying anharmonicity using the lowest-level vibrational correlation treatment (i.e., vibrational Møller-Plesset perturbation theory). Our results indicate when the conventional Bishop-Kirtman perturbation method can be expected to break down and when high-level vibrational correlation methods are likely to be required. Future improvements and extensions are discussed
Resumo:
The level of ab initio theory which is necessary to compute reliable values for the static and dynamic (hyper)polarizabilities of three medium size π-conjugated organic nonlinear optical (NLO) molecules is investigated. With the employment of field-induced coordinates in combination with a finite field procedure, the calculations were made possible. It is stated that to obtain reasonable values for the various individual contributions to the (hyper)polarizability, it is necessary to include electron correlation. Based on the results, the convergence of the usual perturbation treatment for vibrational anharmonicity was examined
Resumo:
Initial convergence of the perturbation series expansion for vibrational nonlinear optical (NLO) properties was analyzed. The zero-point vibrational average (ZPVA) was obtained through first-order in mechanical plus electrical anharmonicity. Results indicated that higher-order terms in electrical and mechanical anharmonicity can make substantial contributions to the pure vibrational polarizibility of typical NLO molecules