943 resultados para Operational structural dynamics
Assessment of haemolysis in biventricular assist device (BVAD) by computational fluid dynamics (CFD)
Resumo:
The results of a recent study have shown that there is a severe shortage of donor hearts to meet the demand of patients suffering from acute heart failures, and patients who received a left ventricular assist device (LVAD) have extended lives. However, some of them develop right heart failure syndrome, and these patients required a right ventricular assist device (RVAD). Hence, current research focus is in the development of a bi-ventricular assist device (Bi-VAD). Computational Fluid Dynamics (CFD) is useful for estimating blood damage for design of a Bi-VAD centrifugal heart pump to meet the demand of the left and right ventricles of a normal hearts with a flow rate of 5 lit/min and the supply pressure of 100 mmHg for the left ventricle and 20 mmHg for the right ventricle. Numerical studies have been conducted to predict pressure, flow rate, the velocity profiles, and streamlines in a continuous flow Bi-VAD using. Based on the predictions of numerical simulations, only few flow regions in the Bi-VAD exhibited signs of velocity profiles and stagnation points, thereby signifying potentially low levels of thrombogenesis.
Resumo:
Organisations are increasingly investing in complex technological innovations such as enterprise information systems with the aim of improving the operations of the business, and in this way gaining competitive advantage. However, the implementation of technological innovations tends to have an excessive focus on either technology innovation effectiveness (also known as system effectiveness), or the resulting operational effectiveness; focusing on either one of them is detrimental to the long-term enterprise benefits through failure to achieve the real value of technological innovations. The lack of research on the dimensions and performance objectives that organisations must be focusing on is the main reason for this misalignment. This research uses a combination of qualitative and quantitative, three-stage methodological approach. Initial findings suggest that factors such as quality of information from technology innovation effectiveness, and quality and speed from operational effectiveness are important and significantly well correlated factors that promote the alignment between technology innovation effectiveness and operational effectiveness.
Resumo:
Research has suggested that corporate venturing is crucial to strategic renewal and firm performance, yet scholars still debate the appropriate organizational configurations to facilitate the creation of new businesses in existing organizations. Our study investigates the effectiveness of combining structural differentiation with formal and informal organizational as well as top management team integration mechanisms in establishing an appropriate context for venturing activities. Our findings suggest that structural differentiation has a positive effect on corporate venturing. In addition, our study indicates that a shared vision has a positive effect on venturing in a structurally differentiated context. Socially integrated senior teams and cross-functional interfaces, however, are ineffective integration mechanisms for establishing linkages across differentiated units and for successfully pursuing corporate venturing.
Resumo:
As a part of vital infrastructure and transportation networks, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs always make the infrastructure owners difficult to undertake. Structural health monitoring (SHM) is set to assess condition and foresee probable failures of designated bridge(s), so as to monitor the structural health of the bridges. The SHM systems proposed recently are incorporated with Vibration-Based Damage Detection (VBDD) techniques, Statistical Methods and Signal processing techniques and have been regarded as efficient and economical ways to solve the problem. The recent development in damage detection and condition assessment techniques based on VBDD and statistical methods are reviewed. The VBDD methods based on changes in natural frequencies, curvature/strain modes, modal strain energy (MSE) dynamic flexibility, artificial neural networks (ANN) before and after damage and other signal processing methods like Wavelet techniques and empirical mode decomposition (EMD) / Hilbert spectrum methods are discussed here.
Resumo:
Ameliorated strategies were put forward to improve the model predictive control in reducing the wind induced vibration of spatial latticed structures. The dynamic matrix control (DMC) predictive method was used and the reference trajectory which is called the decaying functions was suggested for the analysis of spatial latticed structure (SLS) under wind loads. The wind-induced vibration control model of SLS with improved DMC model predictive control was illustrated, then the different feedback strategies were investigated and a typical SLS was taken as example to investigate the reduction of wind-induced vibration. In addition, the robustness and reliability of DMC strategy were discussed by varying the model configurations.
Resumo:
Qualitative research methods require transparency to ensure the ‘trustworthiness’ of the data analysis. The intricate processes of organizing, coding and analyzing the data are often rendered invisible in the presentation of the research findings, which requires a ‘leap of faith’ for the reader. Computer assisted data analysis software can be used to make the research process more transparent, without sacrificing rich, interpretive analysis by the researcher. This article describes in detail how one software package was used in a poststructural study to link and code multiple forms of data to four research questions for fine-grained analysis. This description will be useful for researchers seeking to use qualitative data analysis software as an analytic tool.
Resumo:
This paper explores inter-agency working and examines the implications of inter-agency operations for delivering multi-domain service outcomes. Cross-agency collaborative approaches to service delivery are suggested to provide the vehicle for achieving integrated service and policy goals. However, it is argued these need to be crafted ‘fit’ for purpose’ and may not be the requisite approach for all joint purposes. Moreover, some commentators suggest that the optimism about these partnership arrangements and cross-agency actions to resolve complex multi-dimensional problems may be misplaced and propose that further research into the actual rather than desired consequences of these arrangements may find that, at times, partnership working creates negative effects. While collaboration and partnerships are often framed as the way to achieve real breakthroughs in service delivery across agencies, there remain key challenges to interagency working. As more and insistent calls for agencies and other community actors to work together in resolving complex social problems are heeded, the implications of working across organizational boundaries need to be further investigated. This paper investigates cases of inter-agency programmes to understand the dimensions and limitations of inter-agency working. The paper concludes by offering a framework for better inter-agency working that has applicability across all sectors.
Resumo:
This paper aims to develop the methodology and strategy for concurrent finite element modeling of civil infrastructures at the different scale levels for the purposes of analyses of structural deteriorating. The modeling strategy and method were investigated to develop the concurrent multi-scale model of structural behavior (CMSM-of-SB) in which the global structural behavior and nonlinear damage features of local details in a large complicated structure could be concurrently analyzed in order to meet the needs of structural-state evaluation as well as structural deteriorating. In the proposed method, the “large-scale” modeling is adopted for the global structure with linear responses between stress and strain and the “small-scale” modeling is available for nonlinear damage analyses of the local welded details. A longitudinal truss in steel bridge decks was selected as a case to study how a CMSM-of-SB was developed. The reduced-scale specimen of the longitudinal truss was studied in the laboratory to measure its dynamic and static behavior in global truss and local welded details, while the multi-scale models using constraint equations and substructuring were developed for numerical simulation. The comparison of dynamic and static response between the calculated results by different models indicated that the proposed multi-scale model was found to be the most efficient and accurate. The verification of the model with results from the tested truss under the specific loading showed that, responses at the material scale in the vicinity of local details as well as structural global behaviors could be obtained and fit well with the measured results. The proposed concurrent multi-scale modeling strategy and implementation procedures were applied to Runyang cable-stayed bridge (RYCB) and the CMSM-of-SB of the bridge deck system was accordingly constructed as a practical application.
Resumo:
This paper is a continuation of the paper titled “Concurrent multi-scale modeling of civil infrastructure for analyses on structural deteriorating—Part I: Modeling methodology and strategy” with the emphasis on model updating and verification for the developed concurrent multi-scale model. The sensitivity-based parameter updating method was applied and some important issues such as selection of reference data and model parameters, and model updating procedures on the multi-scale model were investigated based on the sensitivity analysis of the selected model parameters. The experimental modal data as well as static response in terms of component nominal stresses and hot-spot stresses at the concerned locations were used for dynamic response- and static response-oriented model updating, respectively. The updated multi-scale model was further verified to act as the baseline model which is assumed to be finite-element model closest to the real situation of the structure available for the subsequent arbitrary numerical simulation. The comparison of dynamic and static responses between the calculated results by the final model and measured data indicated the updating and verification methods applied in this paper are reliable and accurate for the multi-scale model of frame-like structure. The general procedures of multi-scale model updating and verification were finally proposed for nonlinear physical-based modeling of large civil infrastructure, and it was applied to the model verification of a long-span bridge as an actual engineering practice of the proposed procedures.
Resumo:
The knee forces and moments estimated by inverse dynamics and directly measured by a multiaxial transducer were compared during the gait of a transfemoral amputee. The estimated and directly measured forces and moments were relatively close. However, 3D inverse dynamics estimated only partially the forces and moments associated with the deformation of the prosthetic foot and locking of knee mechanism.
Resumo:
Inverse dynamics is the most comprehensive method that gives access to the net joint forces and moments during walking. However it is based on assumptions (i.e., rigid segments linked by ideal joints) and it is known to be sensitive to the input data (e.g., kinematic derivatives, positions of joint centres and centre of pressure, inertial parameters). Alternatively, transducers can be used to measure directly the load applied on the residuum of transfemoral amputees. So, the purpose of this study was to compare the forces and moments applied on a prosthetic knee measured directly with the ones calculated by three inverse dynamics computations - corresponding to 3 and 2 segments, and « ground reaction vector technique » - during the gait of one patient. The maximum RMSEs between the estimated and directly measured forces (i.e., 56 N) and moment (i.e., 5 N.m) were relatively small. However the dynamic outcomes of the prosthetic components (i.e., absorption of the foot, friction and limit stop of the knee) were only partially assessed with inverse dynamic methods.
Resumo:
Increasingly it has been argued that senior management teams (SMTs), comprising principals, deputy heads and other personnel, play a critical role in the governance of schools. In recent years, many researchers have drawn upon the tools of micropolitics to illuminate the relationships, dynamics and power plays between and amongst members of SMTs. The paper has two foci. Firstly, it overviews some of the seminal literature in the field of SMTs and micropolitics in an attempt to identify the working practices of and challenges facing members of SMTs. Secondly, it discusses an instrument, the TEAM Development Questionnaire, that emerged from a synthesis of this writing and research. The questionnaire presented here was especially devised to use with members of SMTs to help them (i) identify the dynamics amongst team members; and (ii) identify areas for the team to improve. A set of procedures for implementing the TEAM Development Questionnaire is provided to demonstrate its application to the field.