995 resultados para Oncogene Protein v-akt


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The etiology of respiratory distress syndrome (RDS) is multifactorial and multigenic. Studies have suggested that polymorphisms and mutations in the surfactant protein B (SP-B) gene are associated with the pathogenesis of RDS. The objectives of this study were to determine and compare the frequencies of SP-B gene polymorphisms in preterm babies with and without RDS. We studied 151 neonates: 79 preterm babies without RDS and 72 preterm newborns with RDS. The following four SP-B gene polymorphisms were analyzed: A/C at -18, C/T at 1580, A/G at 9306, and G/C at nucleotide 8714. The polymorphisms were detected by PCR amplification of genomic DNA and genotyping. The genotypes were determined using PCR-based converted restriction fragment length polymorphisms. The control group consisted of 42 (53%) girls and 37 (47%) boys. Weight ranged from 1170 to 3260 g and mean gestational age (GA) was 33.9 weeks (range: 29 to 35 weeks and 6 days). The RDS group consisted of 31 (43%) girls and 41 (57%) boys. Weight ranged from 614 to 2410 g and mean GA was 32 weeks (range: 26 to 35 weeks). The logistic regression model showed that GA was the variable that most contributed to the occurrence of RDS. The AG genotype of the A/G polymorphism at position 9306 of the SP-B gene was a protective factor in this population (OR = 0.1681; 95%CI = 0.0426-0.6629). We did not detect differences in the frequencies of the other polymorphisms between the two groups of newborns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Streptococcus mutans is a Gram-positive bacterium present in the oral cavity, and is considered to be one of the leading causes of dental caries. S. mutans has a glnK gene, which codes for a PII-like protein that is possibly involved in the integration of carbon, nitrogen and energy metabolism in several organisms. To characterize the GlnK protein of S. mutans, the glnK gene was amplified by PCR, and cloned into the expression vectors pET29a(+) and pET28b(+). The native GlnK-Sm was purified by anion exchange (Q-Sepharose) and affinity (Hi-Trap Heparin) chromatography. The GlnK-His-Sm protein was purified using a Hi-Trap Chelating-Ni2+ column. The molecular mass of the GlnK-His-Sm proteins was 85 kDa as determined by gel filtration, indicating that this protein is a hexamer in solution. The GlnK-His-Sm protein is not uridylylated by the Escherichia coli GlnD protein. The activities of the GlnK-Sm and GlnK-His-Sm proteins were assayed in E. coli constitutively expressing the Klebsiella pneumoniae nifLA operon. In K. pneumoniae, NifL inhibits NifA activity in the presence of high ammonium levels and the GlnK protein is required to reduce the inhibition of NifL in the presence of low ammonium levels. The GlnK-Sm protein was unable to reduce NifL inhibition of NifA protein. Surprisingly, the GlnK-His-Sm protein was able to partially reduce NifL inhibition of the NifA protein under nitrogen-limiting conditions, in a manner similar to the GlnK protein of E. coli. These results suggested that S. mutans GlnK is functionally different from E. coli PII proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selectins play an essential role in most inflammatory reactions, mediating the initial leukocyte-rolling event on activated endothelium. Heparin and dermatan sulfate (DS) bind and block P- and L-selectin function in vitro. Recently, we reported that subcutaneous administration of DS inhibits colon inflammation in rats by reducing macrophage and T-cell recruitment and macrophage activation. In the present study, we examined the effect of porcine intestinal mucosa DS on renal inflammation and fibrosis in mice after unilateral ureteral obstruction (UUO). Twenty-four adult male Swiss mice weighing 20-25 g were divided into 4 groups: group C (N = 6) was not subjected to any surgical manipulation; group SH (N = 6) was subjected to surgical manipulation but without ureter ligation; group UUO (N = 6) was subjected to unilateral ureteral obstruction and received no treatment; group UUO plus DS (N = 6) was subjected to UUO and received DS (4 mg/kg) subcutaneously daily for 14 days. An immunoblot study was also performed for TGF-β. Collagen (stained area ~3700 µm²), MCP-1 (stained area ~1700 µm²), TGF-β (stained area ~13% of total area), macrophage (number of cells ~40), and myofibroblast (stained area ~1900 µm²) levels were significantly (P < 0.05) higher in the UUO group compared to control. DS treatment significantly (P < 0.05) reduced the content of collagen (stained area ~700 µm²), MCP-1 (stained area ~160 µm²) and TGF-β (stained area ~5% of total area), in addition to myofibroblast (stained area ~190 µm²) and macrophage (number of cells ~32) accumulation in the obstructed kidney. Overall, these results indicate that DS attenuates kidney inflammation by reducing macrophage recruitment, myofibroblast population and fibrosis in mice submitted to UUO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we evaluated the expression of the Zenk protein within the nucleus taeniae of the pigeon’s amygdala (TnA) after training in a classical aversive conditioning, in order to improve our understanding of its functional role in birds. Thirty-two 18-month-old adult male pigeons (Columba livia), weighing on average 350 g, were trained under different conditions: with tone-shock associations (experimental group; EG); with shock-alone presentations (shock group; SG); with tone-alone presentations (tone group; TG); with exposure to the training chamber without stimulation (context group; CG), and with daily handling (naive group; NG). The number of immunoreactive nuclei was counted in the whole TnA region and is reported as density of Zenk-positive nuclei. This density of Zenk-positive cells in the TnA was significantly greater for the EG, SG and TG than for the CG and NG (P < 0.05). The data indicate an expression of Zenk in the TnA that was driven by experience, supporting the role of this brain area as a critical element for neural processing of aversive stimuli as well as meaningful novel stimuli.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The actions of thyroid hormone (TH) on pancreatic beta cells have not been thoroughly explored, with current knowledge being limited to the modulation of insulin secretion in response to glucose, and beta cell viability by regulation of pro-mitotic and pro-apoptotic factors. Therefore, the effects of TH on proinsulin gene expression are not known. This led us to measure: a) proinsulin mRNA expression, b) proinsulin transcripts and eEF1A protein binding to the actin cytoskeleton, c) actin cytoskeleton arrangement, and d) proinsulin mRNA poly(A) tail length modulation in INS-1E cells cultured in different media containing: i) normal fetal bovine serum - FBS (control); ii) normal FBS plus 1 µM or 10 nM T3, for 12 h, and iii) FBS depleted of TH for 24 h (Tx). A decrease in proinsulin mRNA content and attachment to the cytoskeleton were observed in hypothyroid (Tx) beta cells. The amount of eEF1A protein anchored to the cytoskeleton was also reduced in hypothyroidism, and it is worth mentioning that eEF1A is essential to attach transcripts to the cytoskeleton, which might modulate their stability and rate of translation. Proinsulin poly(A) tail length and cytoskeleton arrangement remained unchanged in hypothyroidism. T3 treatment of control cells for 12 h did not induce any changes in the parameters studied. The data indicate that TH is important for proinsulin mRNA expression and translation, since its total amount and attachment to the cytoskeleton are decreased in hypothyroid beta cells, providing evidence that effects of TH on carbohydrate metabolism also include the control of proinsulin gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficacy of endothelin receptor antagonists in protecting against myocardial ischemia/reperfusion (I/R) injury is controversial, and the mechanisms remain unclear. The aim of this study was to investigate the effects of CPU0123, a novel endothelin type A and type B receptor antagonist, on myocardial I/R injury and to explore the mechanisms involved. Male Sprague-Dawley rats weighing 200-250 g were randomized to three groups (6-7 per group): group 1, Sham; group 2, I/R + vehicle. Rats were subjected to in vivo myocardial I/R injury by ligation of the left anterior descending coronary artery and 0.5% sodium carboxymethyl cellulose (1 mL/kg) was injected intraperitoneally immediately prior to coronary occlusion. Group 3, I/R + CPU0213. Rats were subjected to identical surgical procedures and CPU0213 (30 mg/kg) was injected intraperitoneally immediately prior to coronary occlusion. Infarct size, cardiac function and biochemical changes were measured. CPU0213 pretreatment reduced infarct size as a percentage of the ischemic area by 44.5% (I/R + vehicle: 61.3 ± 3.2 vs I/R + CPU0213: 34.0 ± 5.5%, P < 0.05) and improved ejection fraction by 17.2% (I/R + vehicle: 58.4 ± 2.8 vs I/R + CPU0213: 68.5 ± 2.2%, P < 0.05) compared to vehicle-treated animals. This protection was associated with inhibition of myocardial inflammation and oxidative stress. Moreover, reduction in Akt (protein kinase B) and endothelial nitric oxide synthase (eNOS) phosphorylation induced by myocardial I/R injury was limited by CPU0213 (P < 0.05). These data suggest that CPU0123, a non-selective antagonist, has protective effects against myocardial I/R injury in rats, which may be related to the Akt/eNOS pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The control of nitrogen metabolism in pathogenic Gram-positive bacteria has been studied in a variety of species and is involved with the expression of virulence factors. To date, no data have been reported regarding nitrogen metabolism in the odontopathogenic species Streptococcus mutans. GlnR, which controls nitrogen assimilation in the related bacterial species, Bacillus subtilis, was assessed in S. mutans for its DNA and protein binding activity. Electrophoretic mobility shift assay of the S. mutans GlnR protein indicated that GlnR binds to promoter regions of the glnRA and amtB-glnK operons. Cross-linking and pull-down assays demonstrated that GlnR interacts with GlnK, a signal transduction protein that coordinates the regulation of nitrogen metabolism. Upon formation of this stable complex, GlnK enhances the affinity of GlnR for the glnRA operon promoter. These results support an involvement of GlnR in transcriptional regulation of nitrogen metabolism-related genes and indicate that GlnK relays information regarding ammonium availability to GlnR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human papillomavirus (HPV) infection is the most common sexually transmitted disease in the world and is related to the etiology of cervical cancer. The most common high-risk HPV types are 16 and 18; however, the second most prevalent type in the Midwestern region of Brazil is HPV-33. New vaccine strategies against HPV have shown that virus-like particles (VLP) of the major capsid protein (L1) induce efficient production of antibodies, which confer protection against the same viral type. The methylotrophic yeast Pichia pastoris is an efficient and inexpensive expression system for the production of high levels of heterologous proteins stably using a wild-type gene in combination with an integrative vector. It was recently demonstrated that P. pastoris can produce the HPV-16 L1 protein by using an episomal vector associated with the optimized L1 gene. However, the use of an episomal vector is not appropriate for protein production on an industrial scale. In the present study, the vectors were integrated into the Pichia genome and the results were positive for L1 gene transcription and protein production, both intracellularly and in the extracellular environment. Despite the great potential for expression by the P. pastoris system, our results suggest a low yield of L1 recombinant protein, which, however, does not make this system unworkable. The achievement of stable clones containing the expression cassettes integrated in the genome may permit optimizations that could enable the establishment of a platform for the production of VLP-based vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interplay between the host and human cytomegalovirus (HCMV) has a pivotal role in the outcome of infection. A region (referred to as UL/b’) present in the Toledo strain of HCMV and low passage clinical isolates contains 19 additional genes, which are absent in the highly passaged laboratory strain AD169. Products of the UL/b’ genes may determine the manifestations of HCMV infection in vivo. However, little is known about the host factors, which interact with UL/b’ proteins. This study was conducted to investigate the function of the HCMV UL136 protein. By yeast two-hybrid screening, the β1 subunit of the host Na+/K+-ATPase (ATP1B1) was identified to be a candidate protein, which interacts with the HCMV UL136 protein. The interaction was further evaluated both in vitro by pull-down assay and in vivo by immunofluorescent co-localization. The results showed that the UL136 protein can interact with ATP1B1 in vitro. Co-localization of UL136-EGFP and ATP1B1-DsRed in cell membranes suggests that ATP1B1 was a partner of the UL136 protein. It can be proposed that the HCMV UL136 protein may have important roles in processes such as cell-to-cell spread, and in maintaining cell osmotic pressure and intracellular ion homeostasis during HCMV infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wnt proteins are involved in tissue development and their signaling pathways play an important role during embryogenesis. Wnt signaling can promote cell survival, which is beneficial for neurons, but could also lead to tumor development in different tissues. The present study investigated the effects of a Wnt protein on the susceptibility of a neural tumor cell line (PC12 cells) to the cytotoxic compounds ferrous sulfate (10 mM), staurosporine (100 and 500 nM), 3-nitropropionic acid (5 mM), and amyloid β-peptide (Aβ25-35; 50 µM). Cells (1 x 10(6) cells/mL) were treated with the Wnt-3a recombinant peptide (200 ng/mL) for 24 h before exposure to toxic insults. The Wnt-3a protein partially protected PC12 cells, with a 6-15% increase in cell viability in the presence of toxic agents, similar to the effect measured using the MTT and lactate dehydrogenase cell viability assays. The Wnt-3a protein increased protein expression of β-catenin by 52% compared to control. These findings suggest that Wnt signaling can protect neural cells against apoptosis induced by toxic agents, which are relevant to the pathogenesis of Alzheimer’s and Huntington’s diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Azospirillum brasilense is a nitrogen-fixing bacterium associated with important agricultural crops such as rice, wheat and maize. The expression of genes responsible for nitrogen fixation (nif genes) in this bacterium is dependent on the transcriptional activator NifA. This protein contains three structural domains: the N-terminal domain is responsible for the negative control by fixed nitrogen; the central domain interacts with the RNA polymerase σ54 co-factor and the C-terminal domain is involved in DNA binding. The central and C-terminal domains are linked by the interdomain linker (IDL). A conserved four-cysteine motif encompassing the end of the central domain and the IDL is probably involved in the oxygen-sensitivity of NifA. In the present study, we have expressed, purified and characterized an N-truncated form of A. brasilense NifA. The protein expression was carried out in Escherichia coli and the N-truncated NifA protein was purified by chromatography using an affinity metal-chelating resin followed by a heparin-bound resin. Protein homogeneity was determined by densitometric analysis. The N-truncated protein activated in vivo nifH::lacZ transcription regardless of fixed nitrogen concentration (absence or presence of 20 mM NH4Cl) but only under low oxygen levels. On the other hand, the aerobically purified N-truncated NifA protein bound to the nifB promoter, as demonstrated by an electrophoretic mobility shift assay, implying that DNA-binding activity is not strictly controlled by oxygen levels. Our data show that, while the N-truncated NifA is inactive in vivo under aerobic conditions, it still retains DNA-binding activity, suggesting that the oxidized form of NifA bound to DNA is not competent to activate transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic atrophic gastritis (CAG) is a very common gastritis and one of the major precursor lesions of gastric cancer, one of the most common cancers worldwide. The molecular mechanism underlying CAG is unclear, but its elucidation is essential for the prevention and early detection of gastric cancer and appropriate intervention. A combination of two-dimensional gel electrophoresis and mass spectrometry was used in the present study to analyze the differentially expressed proteins. Samples from 21 patients (9 females and 12 males; mean age: 61.8 years) were used. We identified 18 differentially expressed proteins in CAG compared with matched normal mucosa. Eight proteins were up-regulated and 10 down-regulated in CAG when compared with the same amounts of proteins in individually matched normal gastric mucosa. Two novel proteins, proteasome activator subunit 1 (PSME1), which was down-regulated in CAG, and ribosomal protein S12 (RPS12), which was up-regulated in CAG, were further investigated. Their expression was validated by Western blot and RT-PCR in 15 CAG samples matched with normal mucosa. The expression level of RPS12 was significantly higher in CAG than in matched normal gastric mucosa (P < 0.05). In contrast, the expression level of PSME1 in CAG was significantly lower than in matched normal gastric mucosa (P < 0.05). This study clearly demonstrated that there are some changes in protein expression between CAG and normal mucosa. In these changes, down-regulation of PSME1 and up-regulation of RPS12 could be involved in the development of CAG. Thus, the differentially expressed proteins might play important roles in CAG as functional molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H2O2). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H2O2 (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H2O2 (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-density lipoprotein (LDL) receptors are overexpressed in most neoplastic cell lines and provide a mechanism for the internalization and concentration of drug-laden nanoemulsions that bind to these receptors. The aim of the present study was to determine whether the administration of standard chemotherapeutic schemes can alter the expression of LDL and LDL receptor-related protein 1 (LRP-1) receptors in breast carcinoma. Fragments of tumoral and normal breast tissue from 16 consecutive volunteer women with breast cancer in stage II or III were obtained from biopsies before the beginning of neoadjuvant chemotherapy and after chemotherapy, from fragments excised during mastectomy. Tissues were analyzed by immunohistochemistry for both receptors. Because complete response to treatment was achieved in 4 patients, only the tumors from 12 were analyzed. Before chemotherapy, there was overexpression of LDL receptor in the tumoral tissue compared to normal breast tissue in 8 of these patients. LRP-1 receptor overexpression was observed in tumors of 4 patients. After chemotherapy, expression of both receptors decreased in the tumors of 6 patients, increased in 4 and was unchanged in 2. Nonetheless, even when chemotherapy reduced receptors expression, the expression was still above normal. The fact that chemotherapy does not impair LDL receptors expression supports the use of drug carrier systems that target neoplastic cells by the LDL receptor endocytic pathway in patients on conventional chemotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skeletal muscle is the major deposit of protein molecules. As for any cell or tissue, total muscle protein reflects a dynamic turnover between net protein synthesis and degradation. Noninvasive and invasive techniques have been applied to determine amino acid catabolism and muscle protein building at rest, during exercise and during the recovery period after a single experiment or training sessions. Stable isotopic tracers (13C-lysine, 15N-glycine, ²H5-phenylalanine) and arteriovenous differences have been used in studies of skeletal muscle and collagen tissues under resting and exercise conditions. There are different fractional synthesis rates in skeletal muscle and tendon tissues, but there is no major difference between collagen and myofibrillar protein synthesis. Strenuous exercise provokes increased proteolysis and decreased protein synthesis, the opposite occurring during the recovery period. Individuals who exercise respond differently when resistance and endurance types of contractions are compared. Endurance exercise induces a greater oxidative capacity (enzymes) compared to resistance exercise, which induces fiber hypertrophy (myofibrils). Nitrogen balance (difference between protein intake and protein degradation) for athletes is usually balanced when the intake of protein reaches 1.2 g·kg-1·day-1 compared to 0.8 g·kg-1·day-1 in resting individuals. Muscular activities promote a cascade of signals leading to the stimulation of eukaryotic initiation of myofibrillar protein synthesis. As suggested in several publications, a bolus of 15-20 g protein (from skimmed milk or whey proteins) and carbohydrate (± 30 g maltodextrine) drinks is needed immediately after stopping exercise to stimulate muscle protein and tendon collagen turnover within 1 h.