997 resultados para Ocean sediment
Resumo:
Reconstructing the impact of Heinrich events outside the main belt of ice rafting is crucial to understanding the underlying causes of these abrupt climatic events. A high-resolution study of a marine sediment core from the Iberian margin demonstrates that this midlatitude area was strongly affected both by cooling and advection of low-salinity arctic water masses during the last three Heinrich events. These paleoclimatic time series reveal the internal complexity of each of the last three Heinrich events and illustrate the value of parallel studies of the organic and inorganic fractions of the sediments.
Resumo:
Drilling at site 207 (DSDP Leg 21), located on the broad summit of the Lord Howe Rise, bottomed in rhyolitic rocks. Sanidine concentrates from four samples of the rhyolite were dated by the 40Ar/39Ar total fusion method and conventional K-Ar method, and yielded concordant ages of 93.7 +/- 1.1 my, equivalent to the early part of the Upper Cretaceous. At this time the Lord Howe Rise, which has continental-type structure, is thought to have been emergent and adjacent to the eastern margin of the Australian-antarctic continent. Subsequent to 94 my ago and prior to deposition of Maastrichtian (70-65 myBP) marine sediments on top of the rhyolitic basement of the Lord Howe Rise, rifting occurred and the formation of the Tasman Basin began by sea-floor spreading with rotation of the Rise away from the margin of Australia. Subsidence of the Rise continued until Early Eocene (about 50 myBP), probably marking the end of sea-floor spreading in the Tasman Basin. These large scale movements relate to the breakup of this part of Gondwanaland in the Upper Cretaceous.