947 resultados para OSTEOBLAST-ADHESIVE PEPTIDES
Resumo:
OBJECTIVES Recent studies suggest that a combination of enamel matrix derivative (EMD) with grafting material may improve periodontal wound healing/regeneration. Newly developed calcium phosphate (CaP) ceramics have been demonstrated a viable synthetic replacement option for bone grafting filler materials. AIMS This study aims to test the ability for EMD to adsorb to the surface of CaP particles and to determine the effect of EMD on downstream cellular pathways such as adhesion, proliferation, and differentiation of primary human osteoblasts and periodontal ligament (PDL) cells. MATERIALS AND METHODS EMD was adsorbed onto CaP particles and analyzed for protein adsorption patterns via scanning electron microscopy and high-resolution immunocytochemistry with an anti-EMD antibody. Cell attachment and cell proliferation were quantified using CellTiter 96 One Solution Cell Assay (MTS). Cell differentiation was analyzed using real-time PCR for genes encoding Runx2, alkaline phosphatase, osteocalcin, and collagen1α1, and mineralization was assessed using alizarin red staining. RESULTS Analysis of cell attachment revealed significantly higher number of cells attached to EMD-adsorbed CaP particles when compared to control and blood-adsorbed samples. EMD also significantly increased cell proliferation at 3 and 5 days post-seeding. Moreover, there were significantly higher mRNA levels of osteoblast differentiation markers including collagen1α1, alkaline phosphatase, and osteocalcin in osteoblasts and PDL cells cultured on EMD-adsorbed CaP particles at various time points. CONCLUSION The present study suggests that the addition of EMD to CaP grafting particles may influence periodontal regeneration by stimulating PDL cell and osteoblast attachment, proliferation, and differentiation. Future in vivo and clinical studies are required to confirm these findings. CLINICAL RELEVANCE The combination of EMD and CaP may represent an option for regenerative periodontal therapy in advanced intrabony defects.
Resumo:
INTRODUCTION Recent meta-analyses of the outcome of apical surgery using modern techniques including microsurgical principles and high-power magnification have yielded higher rates of healing. However, the information is mainly based on 1- to 2-year follow-up data. The present prospective study was designed to re-examine a large sample of teeth treated with apical surgery after 5 years. METHODS Patients were recalled 5 years after apical surgery, and treated teeth were classified as healed or not healed based on clinical and radiographic examination. (The latter was performed independently by 3 observers). Two different methods of root-end preparation and filling (primary study parameters) were to be compared (mineral trioxide aggregate [MTA] vs adhesive resin composite [COMP]) without randomization. RESULTS A total of 271 patients and teeth from a 1-year follow-up sample of 339 could be re-examined after 5 years (dropout rate = 20.1%). The overall rate of healed cases was 84.5% with a significant difference (P = .0003) when comparing MTA (92.5%) and COMP (76.6%). The evaluation of secondary study parameters yielded no significant difference for healing outcome when comparing subcategories (ie, sex, age, type of tooth treated, post/screw, type of surgery). CONCLUSIONS The results from this prospective nonrandomized clinical study with a 5-year follow-up of 271 teeth indicate that MTA exhibited a higher healing rate than COMP in the longitudinal prognosis of root-end sealing.
Resumo:
UNLABELLED Gastrin-releasing peptide receptors (GRPrs) are overexpressed on a variety of human cancers, providing the opportunity for peptide receptor targeting via radiolabeled bombesin-based peptides. As part of our ongoing investigations into the development of improved GRPr antagonists, this study aimed at verifying whether and how N-terminal modulations improve the affinity and pharmacokinetics of radiolabeled GRPr antagonists. METHODS The potent GRPr antagonist MJ9, Pip-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH(2) (Pip, 4-amino-1-carboxymethyl-piperidine), was conjugated to 1,4,7-triazacyclononane, 1-glutaric acid-4,7 acetic acid (NODAGA), and 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and radiolabeled with (68)Ga and (64)Cu. The GRPr affinity of the corresponding metalloconjugates was determined using (125)I-Tyr(4)-BN as a radioligand. The labeling efficiency of (68)Ga(3+) was compared between NODAGA-MJ9 and NOTA-MJ9 in acetate buffer, at room temperature and at 95°C. The (68)Ga and (64)Cu conjugates were further evaluated in vivo in PC3 tumor xenografts by biodistribution and PET imaging studies. RESULTS The half maximum inhibitory concentrations of all the metalloconjugates are in the high picomolar-low nanomolar range, and these are the most affine-radiolabeled GRPr antagonists we have studied so far in our laboratory. NODAGA-MJ9 incorporates (68)Ga(3+) nearly quantitatively (>98%) at room temperature within 10 min and at much lower peptide concentrations (1.4 × 10(-6) M) than NOTA-MJ9, for which the labeling yield was approximately 45% under the same conditions and increased to 75% at 95°C for 5 min. Biodistribution studies showed high and specific tumor uptake, with a maximum of 23.3 ± 2.0 percentage injected activity per gram of tissue (%IA/g) for (68)Ga-NOTA-MJ9 and 16.7 ± 2.0 %IA/g for (68)Ga-NODAGA-MJ9 at 1 h after injection. The acquisition of PET images with the (64)Cu-MJ9 conjugates at later time points clearly showed the efficient clearance of the accumulated activity from the background already at 4 h after injection, whereas tumor uptake still remained high. The high pancreas uptake for all radiotracers at 1 h after injection was rapidly washed out, resulting in an increased tumor-to-pancreas ratio at later time points. CONCLUSION We have developed 2 GRPr antagonistic radioligands, which are improved in terms of binding affinity and overall biodistribution profile. Their promising in vivo pharmacokinetic performance may contribute to the improvement of the diagnostic imaging of tumors overexpressing GRPr.
Resumo:
PURPOSE To investigate the influence of relative humidity and application time on bond strength to dentin of different classes of adhesive systems. MATERIALS AND METHODS A total of 360 extracted human molars were ground to mid-coronal dentin. The dentin specimens were treated with one of six adhesive systems (Syntac Classic, OptiBond FL, Clearfil SE Bond, AdheSE, Xeno Select, or Scotchbond Universal), and resin composite (Filtek Z250) was applied to the treated dentin surface under four experimental conditions (45% relative humidity/application time according to manufacturers' instructions; 45% relative humidity/reduced application time; 85% relative humidity/application time according to manufacturers' instructions; 85% relative humidity/reduced application time). After storage (37°C, 100% humidity, 24 h), shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by Kruskal-Wallis tests and Mann-Whitney U-tests with Bonferroni-Holm correction for multiple testing (level of significance: α = 0.05). RESULTS Increased relative humidity and reduced application time had no effect on SBS for Clearfil SE Bond and Scotchbond Universal (p = 1.00). For Syntac Classic, OptiBond FL, AdheSE, and Xeno Select there was no effect on SBS of reduced application time of the adhesive system (p ≥ 0.403). However, increased relative humidity significantly reduced SBS for Syntac Classic, OptiBond FL, and Xeno Select irrespective of application time (p ≤ 0.003), whereas for AdheSE, increased relative humidity significantly reduced SBS at recommended application time only (p = 0.002). CONCLUSION Generally, increased relative humidity had a detrimental effect on SBS to dentin, but reduced application time had no effect.
Resumo:
Insect-induced defenses occur in nearly all plants and are regulated by conserved signaling pathways. As the first described plant peptide signal, systemin regulates antiherbivore defenses in the Solanaceae, but in other plant families, peptides with analogous activity have remained elusive. In the current study, we demonstrate that a member of the maize (Zea mays) plant elicitor peptide (Pep) family, ZmPep3, regulates responses against herbivores. Consistent with being a signal, expression of the ZmPROPEP3 precursor gene is rapidly induced by Spodoptera exigua oral secretions. At concentrations starting at 5 pmol per leaf, ZmPep3 stimulates production of jasmonic acid, ethylene, and increased expression of genes encoding proteins associated with herbivory defense. These include proteinase inhibitors and biosynthetic enzymes for production of volatile terpenes and benzoxazinoids. In accordance with gene expression data, plants treated with ZmPep3 emit volatiles similar to those from plants subjected to herbivory. ZmPep3-treated plants also exhibit induced accumulation of the benzoxazinoid phytoalexin 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside. Direct and indirect defenses induced by ZmPep3 contribute to resistance against S. exigua through significant reduction of larval growth and attraction of Cotesia marginiventris parasitoids. ZmPep3 activity is specific to Poaceous species; however, peptides derived from PROPEP orthologs identified in Solanaceous and Fabaceous plants also induce herbivory-associated volatiles in their respective species. These studies demonstrate that Peps are conserved signals across diverse plant families regulating antiherbivore defenses and are likely to be the missing functional homologs of systemin outside of the Solanaceae.
Resumo:
The impact of polymer modification on the physical properties of cementitious mortars is investigated using a multimethod approach. Special emphasis is put on the identification and quantification of different polymer components within the cementitious matrix. With respect to thin-bed applications, particularly tile adhesives, the spatial distributions of latex, cellulose ether (CE), polyvinyl alcohol (PVA), and cement hydration products can be quantified. It is shown that capillary forces and evaporation induce water fluxes in the interconnected part of the pore system, which transport CE, PVA, and cement ions to the mortar interfaces. In contrast, the distribution of latex remains homogeneous. In combination with results from qualitative experiments, the quantitative findings allow reconstruction of the evolution from fresh to hardened mortar, including polymer film formation, cement hydration, and water migration. The resulting microstructure and the failure modes can be correlated with the final adhesive strength of the tile adhesive. The results demonstrate that skinning prior to tile inlaying can strongly reduce wetting properties of the fresh mortar and lower final adhesive strength.
Resumo:
Superparamagnetic iron oxide nanoparticles for biomedical applications are usually coated with organic molecules to form a steric barrier against agglomeration. The stability of these coatings is well established in the synthesis medium but is more difficult to assess in physiological environment. To obtain a first theoretical estimate of their stability in such an environment, we perform density functional theory calculations of the adsorption of water, polyvinyl alcohol (PVA) and polyethylene glycol (PEG) coating molecules, as well as the monomer and dimer of glycine as a prototype short peptide, on the (110) surface of magnetite (Fe3O4) in vacuo. Our results show that PVA binds significantly stronger to the surface than both PEG and glycine, while the difference between the latter two is quite small. Depending on the coverage, the wateradsorption strength is intermediate between PVA and glycine. Due to its strongly interacting OH side groups, PVA is likely to remain bound to the surface in the presence of short peptides. This stability will have to be further assessed by molecular dynamics in the solvated state for which the present work forms the basis.
Resumo:
B-type natriuretic peptide (BNP) levels are elevated in patients with aortic stenosis (AS) and decrease acutely after replacement of the stenotic valve. The long-term prognostic value of BNP after transcatheter aortic valve implantation (TAVI) and the relative prognostic utility of single versus serial peri-interventional measurements of BNP and N-terminal prohormone BNP (NT-pro-BNP) are unknown. This study sought to determine the impact of BNP levels on long-term outcomes after TAVI and to compare the utility of BNP versus NT-pro-BNP measured before and after intervention. We analyzed 340 patients with severe AS and baseline pre-TAVI assessment of BNP. In 219 patients, BNP and NT-pro-BNP were measured serially before and after intervention. Clinical outcomes over 2 years were recorded. Patients with high baseline BNP (higher tertile ≥591 pg/ml) had increased risk of all-cause mortality (adjusted hazard ratio 3.16, 95% confidence interval 1.84 to 5.42; p <0.001) and cardiovascular death at 2 years (adjusted hazard ratio 3.37, 95% confidence interval 1.78 to 6.39; p <0.001). Outcomes were most unfavorable in patients with persistently high BNP before and after intervention. Comparing the 2 biomarkers, NT-pro-BNP levels measured after TAVI showed the highest prognostic discrimination for 2-year mortality (area under the curve 0.75; p <0.01). Baseline-to-discharge reduction, but not baseline levels of BNP, was related to New York Heart Association functional improvement. In conclusion, high preintervention BNP independently predicts 2-year outcomes after TAVI, particularly when elevated levels persist after the intervention. BNP and NT-pro-BNP and their serial periprocedural changes provide complementary prognostic information for symptomatic improvement and survival.
Resumo:
Double cyclization of short linear peptides obtained by solid phase peptide synthesis was used to prepare bridged bicyclic peptides (BBPs) corresponding to the topology of bridged bicyclic alkanes such as norbornane. Diastereomeric norbornapeptides were investigated by 1H-NMR, X-ray crystallography and CD spectroscopy and found to represent rigid globular scaffolds stabilized by intramolecular backbone hydrogen bonds with scaffold geometries determined by the chirality of amino acid residues and sharing structural features of β-turns and α-helices. Proteome profiling by capture compound mass spectrometry (CCMS) led to the discovery of the norbornapeptide 27c binding selectively to calmodulin as an example of a BBP protein binder. This and other BBPs showed high stability towards proteolytic degradation in serum.
Resumo:
BACKGROUND Enamel matrix derivatives (EMDs) have been used clinically for more than a decade for the regeneration of periodontal tissues. The aim of the present study is to analyze the effect on cell growth of EMDs in a gel carrier in comparison to EMDs in a liquid carrier. EMDs in a liquid carrier have been shown to adsorb better to bone graft materials. METHODS Primary human osteoblasts and periodontal ligament (PDL) cells were exposed to EMDs in both gel and liquid carriers and compared for their ability to induce cell proliferation and differentiation. Alizarin red staining and real-time polymerase chain reaction for expression of genes encoding collagen 1, osteocalcin, and runt-related transcription factor 2, as well as bone morphogenetic protein 2 (BMP2), transforming growth factor (TGF)-β1, and interleukin (IL)-1β, were assessed. RESULTS EMDs in both carriers significantly increased cell proliferation of both osteoblasts and PDL cells in a similar manner. Both formulations also significantly upregulated the expression of genes encoding BMP2 and TGF-β1 as well as decreased the expression of IL-1β. EMDs in the liquid carrier further retained similar differentiation potential of both osteoblasts and PDL cells by demonstrating increased collagen and osteocalcin gene expression and significantly higher alizarin red staining. CONCLUSIONS The results from the present study indicate that the new formulation of EMDs in a liquid carrier is equally as potent as EMDs in a gel carrier in inducing osteoblast and PDL activity. Future study combining EMDs in a liquid carrier with bone grafting materials is required to further evaluate its potential for combination therapies.
Resumo:
BACKGROUND Recombinant bone morphogenetic protein two (rhBMP2) has been utilised for a variety of clinical applications in orthopaedic surgery and dental procedures. Despite its widespread use, concerns have been raised regarding its short half-life and transient bioactivity in vivo. Recent investigation aimed at developing rhBMP2 synthesized from a shorter polypeptide chain (108 amino acids) has been undertaken. METHODS The osteopromotive properties of BMP2 were investigated on cell behaviour. Five concentrations of rhBMP2_108 including 10, 50, 100, 200 and 500 ng/ml were compared to a commercially available rhBMP2 (100 ng/ml). Each of the working concentrations of rhBMP2_108 were investigated on MC3T3-E1 osteoblasts for their ability to induce osteoblast recruitment, proliferation and differentiation as assessed by alkaline phosphatase (ALP) staining, alizarin red staining, and real-time PCR for genes encoding ALP, osteocalcin (OCN), collagen-1 (COL-1) and Runx2. RESULTS The results demonstrate that all concentrations of rhBMP2_108 significantly improved cell recruitment and proliferation of osteoblasts at 5 days post seeding. Furthermore, rhBMP2_108 had the most pronounced effects on osteoblast differentiation. It was found that rhBMP2_108 had over a four fold significant increase in ALP activity at seven and 14 days post-seeding and the concentrations ranging from 50 to 200 ng/ml demonstrated the most pronounced effects. Analysis of real-time PCR for genes encoding ALP, OCN, COL-1 and Runx2 further confirmed dose-dependant increases at 14 days post-seeding. Furthermore, alizarin red staining demonstrated a concentration dependant increase in staining at 14 days. CONCLUSION The results from the present study demonstrate that this shorter polypeptide chain of rhBMP2_108 is equally as bioactive as commercially available rhBMP2 for the recruitment of progenitor cells by facilitating their differentiation towards the osteoblast lineage. Future in vivo study are necessary to investigate its bioactivity.
Resumo:
The response of human osteoblasts to materials is crucial for evaluating biocompatibility of an implant material for bone defects. Previous work in our lab demonstrated that the response of human osteoblasts to orthopaedic and dental materials in vitro varies depending on the sex and age of the patient [1]. Osteoblasts from female patients older than 60 years old, adhered less and produced less matrix proteins and calcification than osteoblasts from younger female patients and all ages of male patients. Recently developed, porous tantalum demonstrates improved biomechanical properties for bone and good biocompatibility in in vivo human studies, however there are few, if any, in vitro biocompatibility studies on this material. In this project, we aimed to compare the phenotypic expression of human osteoblasts from young and old female patients to commercially available Ti-6Al-4V and porous tantalum in a well-developed in vitro system. 1. Zhang H, Lewis CG, Aronow MS, Gronowicz G. The effect of patient age on human osteoblasts’ response to Ti-6Al-4V implants in vitro. J. Orthop. Res. 2004;22(1):30-8.