958 resultados para Nuclear ships
Resumo:
Different ethnic groups with a high human leukocyte antigen (HLA)-A11 prevalence have been shown to experience a high rate of Epstein-Barr virus (EBV) infection, EBV-associated malignancies, and Epstein-Barr nuclear antigen (EBNA)-4 mutations. The epitopes 393-408 and 416-424 of EBNA-4 are major antigenic epitopes that elicit an HLA-A11 cytotoxic T lymphocyte (CTL) response to EBV infection. Mutations selectively involving one or more nucleotide residues in these epitopes affect the antigenicity of EBNA-4, because the mutant EBV strains are not recognized by the HLA-A11-restricted CTLs. To investigate these mutations in common EBV-associated malignancies occurring in different populations, we studied the mutation rate of epitopes 393-408 and 416-424 of EBNA-4 in 25 cases of EBV-associated Hodgkin's disease (HD), nine cases of AIDS-related non-Hodgkin's lymphoma, and 37 cases of EBV-associated gastric carcinoma (GC) from the United States, Brazil, and Japan. We found one or more mutations in these two epitopes in 50% (6/12) of United States HD, 15% (2/13) of Brazilian HD, 50% (6/12) United States GC and 28% (7/25) Japanese GC, and 22% (2/9) of United States AIDS-lymphoma. Similar mutations were found in 30% (3/10) of United States reactive, 0% (0/6) of Brazilian reactive, and 25% (2/8) Japanese reactive tissues. The most frequent amino acid substitutions were virtually identical to those seen in previously reported isolates from EBV-associated nasopharyngeal carcinomas and Burkitt's lymphomas occurring in high prevalence HLA-A11 regions. However, only 2/28 (7%) mutations occurred in HLA-A11-positive patients. Our studies suggest that: 1) EBNA-4 mutations are a common phenomenon in EBV-associated HD, GC, and AIDS-lymphoma; 2) the mutation rate does not vary in these geographic areas and ethnic groups; 3) EBNA-4 mutations in EBV-associated United States and Brazilian HD, United States and Japanese GC, and United States AIDS lymphomas are not related to patients' HLA-A11 status.
Resumo:
In the quark model of the nucleon, the Fermi statistics of the elementary constituents can influence significantly the properties of multinucleon bound systems. In the Skyrme model, on the other hand, the basic quanta are bosons, so that qualitatively different statistics effects can be expected a priori. In order to illustrate this point, we construct schematic one-dimensional quark and soliton models which yield fermionic nucleons with identical baryon densities. We then compare the baryon densities of a two-nucleon bound state in both models. Whereas in the quark model the Pauli principle for quarks leads to a depletion of the density in the central region of the nucleus, the soliton model predicts a slight increase of the density in that region, due to the bosonic statistics of the meson-field quanta.
Resumo:
We argue that the minimal chiral background for the two-pion exchange nucleon-nucleon (NN) interaction has nowadays a rather firm conceptual basis, which entitles it to become a standard ingredient of any modern potential. In order to facilitate applications, we present a parametrized version of a configuration space potential derived previously. We than use it to assess the phenomenological contents of some existing NN potentials.
Resumo:
Results of differential scanning calometry (DSC), x-ray diffraction (XRD), and F-19 nuclear magnetic resonance (NMR) of InF3-based glasses, treated at different temperatures, ranging from glass transition temperature (T-g) to crystallization temperature (T-c), are reported. The main features of the experimental results are as follows. DSC analysis emphasizes several steps in the crystallization process. Heat treatment at temperatures above T-g enhances the nucleation of the first growing phases but has little influence on the following ones. XRD results show that several crystalline phases are formed, with solid state transitions when heated above 680 K, the F-19 NMR results show that the spin-lattice relaxation, for the glass samples heat treated above 638 K, is described by two time constants. For samples treated below this temperature a single time constant T-1 was observed. Measurements of the F-19 spin-lattice relaxation time (T-1), as a function of temperature,made possible the identification of the mobile fluoride ions. The activation energy, for the ionic motion, in samples treated at crystallization temperature was found to be 0.18 +/- 0.01 eV. (C) 1998 American Institute of Physics.
Resumo:
Transparent siloxane-polymethylmethacrylate (PMMA) hybrids were synthesized by the sol-gel process through hydrolysis of methacryloxyproyltrimethoxysilane (TMSM), tetramethoxysilane (TMOS) and polymerization of methylmethacrylate (MMA) using benzol peroxide (BPO) as catalyst. These composites have a good chemical stability due to the presence of covalent bonds between the inorganic (siloxane) and organic (PMMA) phases. The effects of siloxane content, pH of the initial sol and BPO content on the structure of the dried gels were analyzed by small-angle X-ray scattering (SAXS). SAXS results revealed the presence of an interference (or correlation) peak at medium q-range for all compositions, suggesting that siloxane groups located at the ends of PMMA chains form isolated clusters that are spatially correlated. The average intercluster distance - estimated from the q-value corresponding to the maximum in SAXS spectra - decreases for samples prepared with increasing amount of TMSM-TMOS. This effect was assigned to the expected increase in the number density of siloxane groups for progressively higher siloxane content. The increase of BPO content promotes a more efficient polymerization of MMA monomers but has no noticeable effect on the average intercluster distance. High pH favors polycondensation reactions between silicon species of both TMOS and TMSM silicon alcoxides, leading to a structure in which all siloxane clusters are bonded to PMMA chains. This effect was confirmed by Si-29 nuclear-magnetic resonance (NMR) measurements.
Resumo:
INTRODUCTION: Visual analysis is widely used to interpret regional cerebral blood flow (rCBF) SPECT images in clinical practice despite its limitations. Automated methods are employed to investigate between-group rCBF differences in research Studies but have rarely been explored in individual analyses.OBJECTIVES: To compare visual inspection by nuclear physicians with the automated statistical parametric mapping program using a SPECT dataset of patients with neurological disorders and normal control images.METHODS: Using statistical parametric mapping, 14 SPECT images from patients with various neurological disorders were compared individually with a databank of 32 normal images using a statistical threshold of p<0.05 (corrected for multiple comparisons at the level of individual voxels or clusters). Statistical parametric mapping results were compared with Visual analyses by a nuclear physician highly experienced in neurology (A) as well as a nuclear physician with a general background of experience (B) who independently classified images as normal or altered, and determined the location of changes and the severity.RESULTS: of the 32 images of the normal databank, 4 generated maps showing rCBF abnormalities (p<0.05, corrected). Among the 14 images from patients with neurological disorders, 13 showed rCBF alterations. Statistical parametric mapping and physician A completely agreed on 84.37% and 64.28% of cases from the normal databank and neurological disorders, respectively. The agreement between statistical parametric mapping and ratings of physician B were lower (71.18% and 35.71%, respectively).CONCLUSION: Statistical parametric mapping replicated the findings described by the more experienced nuclear physician. This finding suggests that automated methods for individually analyzing rCBF SPECT images may be a valuable resource to complement visual inspection in clinical practice.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work reports for the first time the identification and immunolocalization, by confocal and conventional indirect immunofluorescence, of m(3)G epitopes present in ribonucleoproteins of the following trypanosomatids: Trypanosoma cruzi epimastigotes of three different strains, Blastocrithidia ssp., and Leishmania major promastigotes. The identity of these epitopes and hence the specificity of the anti-m(3)G monoclonal antibody were ascertained through competition reaction with 7-methylguanosine that blocks the Ig binding sites, abolishing the fluorescence in all the parasites tested and showing a specific perinuclear localization of the snRNPs, which suggests their nuclear reimport in the parasites. Using an immunoprecipitation technique, it was also possible to confirm the presence of the trimethylguanosine epitopes in trypanosomatids.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We suggest that pion and kaon interlerometry are complementary probes that help differentiate hadronic resonance gas from plasma dynamical models. We also discuss how interferometry could be used to test the presence of resonances at AGS energies. Finally, we study the A dependence of interferometry in the resonance model at 200 A GeV. © 1991.