974 resultados para Nonpremixed Flame


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis presents an experimentally validated modelling study of the flow of combustion air in an industrial radiant tube burner (RTB). The RTB is used typically in industrial heat treating furnaces. The work has been initiated because of the need for improvements in burner lifetime and performance which are related to the fluid mechanics of the com busting flow, and a fundamental understanding of this is therefore necessary. To achieve this, a detailed three-dimensional Computational Fluid Dynamics (CFD) model has been used, validated with experimental air flow, temperature and flue gas measurements. Initially, the work programme is presented and the theory behind RTB design and operation in addition to the theory behind swirling flows and methane combustion. NOx reduction techniques are discussed and numerical modelling of combusting flows is detailed in this section. The importance of turbulence, radiation and combustion modelling is highlighted, as well as the numerical schemes that incorporate discretization, finite volume theory and convergence. The study first focuses on the combustion air flow and its delivery to the combustion zone. An isothermal computational model was developed to allow the examination of the flow characteristics as it enters the burner and progresses through the various sections prior to the discharge face in the combustion area. Important features identified include the air recuperator swirler coil, the step ring, the primary/secondary air splitting flame tube and the fuel nozzle. It was revealed that the effectiveness of the air recuperator swirler is significantly compromised by the need for a generous assembly tolerance. Also, there is a substantial circumferential flow maldistribution introduced by the swirier, but that this is effectively removed by the positioning of a ring constriction in the downstream passage. Computations using the k-ε turbulence model show good agreement with experimentally measured velocity profiles in the combustion zone and proved the use of the modelling strategy prior to the combustion study. Reasonable mesh independence was obtained with 200,000 nodes. Agreement was poorer with the RNG  k-ε and Reynolds Stress models. The study continues to address the combustion process itself and the heat transfer process internal to the RTB. A series of combustion and radiation model configurations were developed and the optimum combination of the Eddy Dissipation (ED) combustion model and the Discrete Transfer (DT) radiation model was used successfully to validate a burner experimental test. The previously cold flow validated k-ε turbulence model was used and reasonable mesh independence was obtained with 300,000 nodes. The combination showed good agreement with temperature measurements in the inner and outer walls of the burner, as well as with flue gas composition measured at the exhaust. The inner tube wall temperature predictions validated the experimental measurements in the largest portion of the thermocouple locations, highlighting a small flame bias to one side, although the model slightly over predicts the temperatures towards the downstream end of the inner tube. NOx emissions were initially over predicted, however, the use of a combustion flame temperature limiting subroutine allowed convergence to the experimental value of 451 ppmv. With the validated model, the effectiveness of certain RTB features identified previously is analysed, and an analysis of the energy transfers throughout the burner is presented, to identify the dominant mechanisms in each region. The optimum turbulence-combustion-radiation model selection was then the baseline for further model development. One of these models, an eccentrically positioned flame tube model highlights the failure mode of the RTB during long term operation. Other models were developed to address NOx reduction and improvement of the flame profile in the burner combustion zone. These included a modified fuel nozzle design, with 12 circular section fuel ports, which demonstrates a longer and more symmetric flame, although with limited success in NOx reduction. In addition, a zero bypass swirler coil model was developed that highlights the effect of the stronger swirling combustion flow. A reduced diameter and a 20 mm forward displaced flame tube model shows limited success in NOx reduction; although the latter demonstrated improvements in the discharge face heat distribution and improvements in the flame symmetry. Finally, Flue Gas Recirculation (FGR) modelling attempts indicate the difficulty of the application of this NOx reduction technique in the Wellman RTB. Recommendations for further work are made that include design mitigations for the fuel nozzle and further burner modelling is suggested to improve computational validation. The introduction of fuel staging is proposed, as well as a modification in the inner tube to enhance the effect of FGR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nature and kinetics of electrode reactions and processes occurring for four lightweight anode systems which have been utilised in reinforced concrete cathodic protection systems have been studied. The anodes investigated were flame sprayed zinc, conductive paint and two activated titanium meshes. The electrochemical properties of each material were investigated in rapidly stirred de-oxygenated electrolytes using anodic potentiodynamic polarisation. Conductive coating electrodes were formed on glass microscope slides, whilst mesh strands were immersed directly. Oxygen evolution occurred preferentially for both mesh anodes in saturated Ca (OH)2/CaC12 solutions but was severely inhibited in less alkaline solutions and significant current only passed in chloride solutions. The main reactions for conductive paint was based on oxygen evolution in all electrolytes, although chlorides increased the electrical activity. Self-corrosion of zinc was controlled by electrolyte composition and the experimental set-up, chlorides increasing the electrical activity. Impressed current cathodic protection was applied to 25 externally exposed concrete slabs over a period of 18 months to investigate anode degradation mechanisms at normal and high current densities. Specimen chloride content, curing and reinforcement depth were also variables. Several destructive and non-destructive methods for assessing the performance of anodes were evaluated including a site instrument for quantitative "instant-off- potential measurements. The impact of cathodic protection on the concrete substrate was determined for a number of specimens using appropriate methods. Anodic degradation rates were primarily influenced by current density, followed by cemendtious alkalinity, chloride levels and by current distribution. Degradation of cementitious overlays and conductive paint substrates proceeded by sequential neutralisation of cement phases, with some evidence of paint binder oxidation. Sprayed zinc progressively formed an insulating layer of hydroxide complexes, which underwent pitting_ attack in the presence of sufficient chlorides, whilst substrate degradation was minimal. Adhesion of all anode systems decreased with increasing current density. The influence of anode material on the ionic gradients which can develop during cathodic protection was investigated. A constant current was passed through saturated cement paste prisms containing calcium chloride to central cathodes via anodes applied or embedded at each end. Pore solution was obtained from successive cut paste slices for anion and cation analyses. Various experimental errors reduced the value of the results. Characteristic S-shaped profiles were not observed and chloride ion profiles were ambiguous. Mesh anode specimens were significantly more durable than the conductive coatings in the high humidity environment. Limited results suggested zinc ion migration to the cathode region. Electrical data from each investigation clearly indicated a decreasing order of anode efficiency by specific anode material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After a brief review of the various forms of thermal spraying equipment and processes, descriptions of the basic principles involved and the general functions for which thermally sprayed coatings are used are given. The background of the collaborating company, Metallisation, is described and their position in the overall market discussed, providing a backdrop against which the appropriateness of various project options might be judged. Current arc-spraying equipment is then examined, firstly in terms of the workings of their constituent parts and subsequently by examining the effects of changes in design and in operating parameters both upon equipment operation and the coatings produced. Published literature relating to these matters is reviewed. Literature relating to the production, comminution and propulsion of the particles which form the spray is discussed as are the mechanisms involved at impact with the substrate. Literature on the use of rockets for thermal spraying and induction heating as a process for feedstock melting are also reviewed. Three distinct options for further study are derived and preliminary tests and costings made to allow one option alone, the use of rocket acceleration, to go forward to the experimental phase. A suitable rocket burner was developed, tested and incorporated into an arc-spray system so that the sprayability of the whole could be assessed. Coatings were made using various parameters and these are compared with coatings produced by a standard system. Coatings were examined for macro and micro hardness, cohesive strength, porosity and by microstructural examination. The results indicate a high degree of similarity between the coatings produced by the standard system and the high velocity system. This was surprising in view of the very different atomising media and velocities. Possible causes for this similarity and the general behaviour of this new system and the standard system are discussed before the study reaches its conclusions in not proving the hypothesis that an increase in particle velocity would improve the mechanical properties of arc-sprayed steel coatings. KEY WORDS: Sprayed metal coatings, Electric arc spraying, High velocity flame spraying, Sprayed coating properties

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poster section INTRODUCTION. Retrospective Analysis PURPOSE. To evaluate the morphology and location of optic disc haemorrhages (ODH) identified at diabetic retinopathy (DR) screening to establish whether particular ODH are predictive of ocular disease (e.g. glaucoma). METHODS. Retrospective analysis of 77 patients who presented with ODH at DR screening in the Birmingham and Black Country screening programme between June 2009-March 2010. Mean age was 71 years (range 39-89). Cup/disc ratio (CDR), location and morphology of the haemorrhage were recorded. The outcome of the referral and the status of the ODH were followed up a year later. RESULTS. Of the 77 referred, 34 patients were unassessed for possible glaucoma. Of the 43 patients that were assessed in the hospital eye service for glaucoma, 11 (26%) were diagnosed with glaucoma. These glaucoma patients mostly presented with flame haemorrhages (64%) and blot haemorrhages (36%). Haemorrhages tended to adjoin the margin of the OD (64%), and were more commonly flame shaped (64%). They less commonly occurred in the optic disc itself (36%), and were all blot shaped. The OD Cup/disc ratio (CDR) of the patients with glaucoma (n=11) ranged from 0.33-0.57. It is interesting to note the highest CDR was 0.68 in the 77 patients referred. 32 patients were confirmed as not having glaucoma. 24 (75%) of these patients presented with an ODH adjoining the margin, of which 20 (83%) were flame, and 4 blot (17%) shaped. Only 8 (25%) presented with an ODH in the OD, of which 6 (75%) were blot shaped. One year follow up of the 77 referred cases revealed that the ODH resolved in 45 (57%) patients while 10 (13%) still had an ODH present. 15 (21%) were still under ophthalmology hence digital retinal photos were not available for assessment. Six patients (8%) (age range 71-91 years) died within the year, and one lost to follow up. CONCLUSIONS. The results suggest that a significant number of patients with ODH have glaucoma and that the differing morphology of the haemorrhage is not a major predictor i.e. blot versus flame shaped, adjoining or in the optic disc. The cup/disc ratio did not predict glaucoma either.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Short rotation willow coppice (SRC) has been investigated for the influence of K, Ca, Mg, Fe and P on its pyrolysis and combustion behaviours. These metals are the typical components that appear in biomass. The willow sample was pretreated to remove salts and metals by hydrochloric acid, and this demineralised sample was impregnated with each individual metal at the same mol g biomass (2.4 × 10 mol g demineralised willow). Characterisation was performed using thermogravimetric analysis (TGA), and differential thermal analysis (DTA) for combustion. In pyrolysis, volatile fingerprints were measured by means of pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS). The yields and distribution of pyrolysis products have been influenced by the presence of the catalysts. Most notably, both potassium and phosphorous strongly catalysed the pyrolysis, modifying both the yield and distribution of reaction products. Temperature programmed combustion TGA indicates that combustion of biomass char is catalysed by all the metals, while phosphorus strongly inhibits the char combustion. In this case, combustion rates follow the order for volatile release/combustion: P>K>Fe>Raw>HCl>Mg>Ca, and for char combustion K>Fe>raw>Ca-Mg>HCl>P. The samples impregnated with phosphorus and potassium were also studied for combustion under flame conditions, and the same trend was observed, i.e. both potassium and phosphorus catalyse the volatile release/combustion, while, in char combustion, potassium is a catalyst and phosphorus a strong inhibitor, i.e. K impregnated>(faster than) raw>demineralised»P impregnated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop a method for fabricating very small silica microbubbles having a micrometer-order wall thickness and demonstrate the first optical microbubble resonator. Our method is based on blowing a microbubble using stable radiative CO2 laser heating rather than unstable convective heating in a flame or furnace. Microbubbles are created along a microcapillary and are naturally opened to the input and output microfluidic or gas channels. The demonstrated microbubble resonator has 370 µm diameter, 2 µm wall thickness, and a Q factor exceeding 10. © 2010 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop a method for fabricating very small silica microbubbles having a micrometer-order wall thickness and demonstrate the first optical microbubble resonator. Our method is based on blowing a microbubble using stable radiative CO2 laser heating rather than unstable convective heating in a flame or furnace. Microbubbles are created along a microcapillary and are naturally opened to the input and output microfluidic or gas channels. The demonstrated microbubble resonator has 370 µm diameter, 2 µm wall thickness, and a Q factor exceeding 10. © 2010 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal decomposition behavior of 1,2-bis-(2,4,6-tribromophenoxy)ethane (BTBPE) widely used as flame retardant plastics additive was studied by HRTG and differential scanning calorimetries. It was pyrolysed in inert atmosphere at 240 and 340 °C in isothermal conditions, the decomposition products were collected and investigated by means of IR and GC-MS, most of them are identified. It was found that BTBPE mostly evaporates at 240 °C. The decomposition products at 340°C depend on rate of their removal from the hot reaction zone. Main primary decomposition products found in case of rapid removal are tribromophenol and vinyl tribromophenyl ether. Whereas, prolonged contact with heating zone also produces hydrogen bromide, ethylene bromide, polybrominated vinyl phenyl ethers and diphenyl ethers, and dibenzodioxins. The nature of the identified compounds are in accordance with a molecular and radical pyrolysis reaction pathway. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relationships among quality factors in retailed free-range, corn-fed, organic, and conventional chicken breasts (9) were modeled using chemometric approaches. Use of principal component analysis (PCA) to neutral lipid composition data explained the majority (93%) of variability (variance) in fatty acid contents in 2 significant multivariate factors. PCA explained 88 and 75% variance in 3 factors for, respectively, flame ionization detection (FID) and nitrogen phosphorus (NPD) components in chromatographic flavor data from cooked chicken after simultaneous distillation extraction. Relationships to tissue antioxidant contents were modeled. Partial least square regression (PLS2), interrelating total data matrices, provided no useful models. By using single antioxidants as Y variables in PLS (1), good models (r2 values > 0.9) were obtained for alpha-tocopherol, glutathione, catalase, glutathione peroxidase, and reductase and FID flavor components and among the variables total mono and polyunsaturated fatty acids and subsets of FID, and saturated fatty acid and NPD components. Alpha-tocopherol had a modest (r2 = 0.63) relationship with neutral lipid n-3 fatty acid content. Such factors thus relate to flavor development and quality in chicken breast meat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consumers expect organic, free-range and corn-fed chicken to be nutritionally wholesome and have premium flavour characters. Interrelationships between flavour, fatty acids and antioxidants of retailed breasts were explored using simple correlations and chemometrics. Saturated fatty acid C16:0, and n-6 polyunsaturated C20:4 and C22:4 contents were correlated with lipid oxidation products (thiobarbituric acid reactive substances) and in partial least-squares regression (PLS1) with 32 high-resonance gas chromatography (flame ionization) flavour components (r2>0.90), and also linked (r2>0.80) to antioxidants (-tocopherol, glutathione and catalase). A further 10 high-resonance gas chromatography nitrogen phosphorus detector flavour components were correlated (r 2>0.85) with C18:3(n-3) content. Chicken character was correlated with C18:3(n-3), and C18:3(n-6) inversely with oily, off-flavour and lipid oxidation. Sweet, fruity and oily aromas were linked in PLS1 with 13 specific fatty acids (r2>0.6), and bland taste with total summed (six) fatty acid fractions (r2>0.81). Specific antioxidants were correlated with sweet, fruity and chicken aromas, and -tocopherol inversely with lipid oxidation. PLS2 confirmed relationships between fatty acid composition, antioxidants and the subsets of 32 and 10 flavour components. Clear relationships were thus observed between lipid and antioxidant compositions and flavour in chicken breast meat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Halogen-containing aromatics, mainly bromine-containing phenols, are harmful compounds contaminating pyrolysis oil from electronic boards containing halogenated flame retardants. In addition, theirformation increases the potential for evolution of polybrominated dibenzo-p-dioxins (PBDDs) and dibenzofurans (PBDFs) at relatively low temperature (up to 500 °C). As a model compound, 2,4-dibromophenol (DBP) was pyrolyzed at 290-450 °C. While its pyrolysis in a nitrogen flow reactor or in encapsulated ampules yields bromine-containing phenols, phenoxyphenols, PBDDs, and PBDFs, pyrolysis of DBP in a hydrogen-donating medium of polypropylene (PP) at 290-350 °C mainly results in the formation of phenol and HBr, indicating the occurrence of a facile hydrodebromination of DBP. The hydrodebromination efficiency depends on temperature, pressure, and the ratio of the initial components. This thermal behavior of DBP is compared to that of 2,4-dichlorophenol and decabromodiphenyl ether. A treatment of halogen-containing aromatics with PP offers a new perspective on the development of low-environmental-impact disposal processes for electronic scrap. © 2005 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MSC 2010: 34A08 (main), 34G20, 80A25

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combustion-generated carbon black nano particles, or soot, have both positive and negative effects depending on the application. From a positive point of view, it is used as a reinforcing agent in tires, black pigment in inks, and surface coatings. From a negative point of view, it affects performance and durability of many combustion systems, it is a major contributor of global warming, and it is linked to respiratory illness and cancer. Laser-Induced Incandescence (LII) was used in this study to measure soot volume fractions in four steady and twenty-eight pulsed ethylene diffusion flames burning at atmospheric pressure. A laminar coflow diffusion burner combined with a very-high-speed solenoid valve and control circuit provided unsteady flows by forcing the fuel flow with frequencies between 10 Hz and 200 Hz. Periodic flame oscillations were captured by two-dimensional phase-locked LII images and broadband luminosity images for eight phases (0° – 360°) covering each period. A comparison between the steady and pulsed flames and the effect of the pulsation frequency on soot volume fraction in the flame region and the post flame region are presented. The most significant effect of pulsing frequency was observed at 10 Hz. At this frequency, the flame with the lowest mean flow rate had 1.77 times enhancement in peak soot volume fraction and 1.2 times enhancement in total soot volume fraction; whereas the flame with the highest mean flow rate had no significant change in the peak soot volume fraction and 1.4 times reduction in the total soot volume fraction. A correlation (fvRe-1 = a + b·Str) for the total soot volume fraction in the flame region for the unsteady laminar ethylene flames was obtained for the pulsation frequency between 10 Hz and 200 Hz, and the Reynolds number between 37 and 55. The soot primary particle size in steady and unsteady flames was measured using the Time-Resolved Laser-Induced Incandescence (TIRE-LII) and the double-exponential fit method. At maximum frequency (200 Hz), the soot particles were smaller in size by 15% compared to the steady case in the flame with the highest mean flow rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation explores the role of artillery forward observation teams during the battle of Okinawa (April–June 1945). It addresses a variety of questions associated with this front line artillery support. First, it examines the role of artillery itself in the American victory over the Japanese on Okinawa. Second, it traces the history of the forward observer in the three decades before the end of World War II. Third, it defines the specific role of the forward observation teams during the battle: what they did and how they did it during this three-month duel. Fourth, it deals with the particular problems of the forward observer. These included coordination with the local infantry commander, adjusting to the periodic rotation between the front lines and the artillery battery behind the line of battle, responding to occasional problems with "friendly fire" (American artillery falling on American ground forces), dealing with personnel turnover in the teams (due to death, wounds, and illness), and finally, developing a more informal relationship between officers and enlisted men to accommodate the reality of this recently created combat assignment. Fifth, it explores the experiences of a select group of men who served on (or in proximity to) forward observation teams on Okinawa. Previous scholars and popular historians of the battle have emphasized the role of Marines, infantrymen, and flame-throwing armor. This work offers a different perspective on the battle and it uses new sources as well. A pre-existing archive of interviews with Okinawan campaign forward observer team members conducted in the 1990s forms the core of the oral history component of this research project. The verbal accounts were checked against and supplemented by a review of unit reports obtained from the U.S. National Archives and various secondary sources. The dissertation concludes that an understanding of American artillery observation is critical to a more complete comprehension of the battle of Okinawa. These mid-ranking (and largely middle class) soldiers proved capable of adjusting to the demands of combat conditions. They provide a unique and understudied perspective of the entire battle.