923 resultados para Nitrosyl complexes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biological activity of some new mixed silver-phosphane-thio-ligand complexes, with 1:1:2, 1:1:1 and 1:2:1 (Ag:phospine:ligand) compositions, have been examined. Ten compounds were prepared using a series of silver(I) salts [AgX, where X = NO3, ClO4, PF6 and Br], tertiary phosphines and the ligands thi-osemicarbazide, 2-(propan-2-ylidene) hydrazinecarbothioamide, and thiazolidine-2-thione. The syntheses were carried out under ambient conditions, and the ten complexes obtained were found to be light stable. All 10 compounds were characterized by elemental analysis, FTIR, and NMR spectroscopy, whereas nine compounds were characterized by X-ray diffraction analysis. The anti-proliferative activities were evaluated by minimum inhibitory concentration (MIC: lg/mL) in an aqueous suspension system and they all show promising potential activity against selective strains of Gram-positive and Gram-negative bacteria, fungous and Mycrobaterium tuberculosis H37Rv. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis, structural and spectroscopic characterizations, molecular modeling and antimycobacterial assays of new silver(I) complexes with two Schiff bases - MBDA and MBDB - are reported. The complexes [Ag(MBDA) 2]NO3, or AgMBDA, and [Ag(MBDB)NO3] or AgMBDB, were obtained by the reaction of the respective ligands with silver(I) nitrate in methanol. The Schiff bases were previously obtained by mixing ethylenediamine or 1,3-diaminopropane with p-anisaldehyde. The characterizations of the complexes were based on elemental (C, H and N) and thermal (TG-DTA) analyses and 13C and 1H NMR and FT-IR spectroscopic measurements, as well as X-ray structure determination for AgMBDA. Spectroscopic data predicted by DFT calculations are in agreement with the experimental data for the AgMBDA complex. The AgMBDA complex has a monomeric structure with a molar proportion 1:2 Ag/ligand, while AgMBDB presents a 1:1 proportion. The complexes AgMBDA and AgMBDB showed to be more effective against Mycobacterium tuberculosis than antibacterial agent silver sulfadiazine - SSD. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of advanced electronic ceramics is directly related to the synthesis route employed. Sol-gel methods are widely used for this purpose. However, the physicochemical intermediate steps are still not well understood. Better understanding and control of these processes can improve the final quality of samples. In this work, we studied theoretically the formation of metal complexes between citric acid and lithium or barium metal cations with different citric acid/metal proportions, using Density Functional Theory electronic structure calculations. Infrared and Raman scattering spectra were simulated for the more stable geometric configurations. Using this methodology, we identified some features of complexes formed in the synthesis process. Our results show that the complexes can be distinguished by changes in the bands assigned to C=O, COH-, and COO- group vibrations. An estimate of the most stable complexes is made based on total energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate the effect on the aqueous solubility and release rate of sulfamerazine (SMR) as model drug, inclusion complexes with beta-cyclodextrin (beta CD), methyl-beta-cyclodextrin (M beta CD) and hydroxypropyl-beta-cyclodextrin (HP beta CD) and a binary system with meglumine (MEG) were developed. The formation of 1: 1 inclusion complexes of SMR with the CDs and a SMR: MEG binary system in solution and in solid state was revealed by phase solubility studies (PSS), nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), thermal analysis and X-Ray diffractometry (XRD) studies. The CDs solubilization of SMR could be improved by ionization of the drug molecule through pH adjustments. The higher apparent stability constants of SMR:CDs complexes were obtained in pH 2.00, demonstrating that CDs present more affinity for the unionized drug. The best approach for SMR solubility enhancement results from the combination of MEG and pH adjustment, with a 34-fold increment and a S-max of 54.8 mg/ml. The permeability of the drug was reduced due to the presence of beta CD, M beta CD, HP beta CD and MEG when used as solubilizers. The study then suggests interesting applications of CD or MEG complexes for modulating the release rate of SMR through semipermeable membranes.