923 resultados para Nitrogen in animals.
Resumo:
Alcoholic liver disease (ALD) is a well recognized and growing health problem worldwide. ALD advances from fatty liver to inflammation, necrosis, fibrosis and cirrhosis. There is accumulating evidence that the innate immune system is involved in alcoholic liver injury. Within the innate and acquired immune systems, the complement system participates in inflammatory reactions and in the elimination of invading foreign, as well as endogenous apoptotic or injured cells. The present study aimed at evaluating the role of the complement system in the development of alcoholic liver injury. First, in order to study the effects of chronic ethanol intake on the complement system, the deposition of complement components in liver and the expression of liver genes associated with complement in animals with alcohol-induced liver injury were examined. It was demonstrated that chronic alcohol exposure leads to hepatic deposition of the complement components C1, C3, C8 and C9 in the livers of rats. Liver gene expression analysis showed that ethanol up-regulated the expression of transcripts for complement factors B, C1qA, C2, C3 and clusterin. In contrast, ethanol down-regulated the expression of the complement regulators factor H, C4bp and factor D and the terminal complement components C6, C8α and C9. Secondly, the role of the terminal complement pathway in the development of ALD was evaluated by using rats genetically deficient in the complement component C6 (C6-/-). It was found that chronic ethanol feeding induced more liver pathology (steatosis and inflammatory changes) in C6-/- rats than in wild type rats. The hepatic triacylglyceride content and plasma alanine aminotransferase activity increased in C6-/- rats, supporting the histopathological findings and elevation of the plasma pro-/anti-inflammatory TNF-/IL-10 ratio was also more marked in C6-/- rats. Third, the role of the alternative pathway in the development of alcoholic liver steatosis was characterized by using C3-/- mice. In C3-/- mice ethanol feeding tended to reduce steatosis and had no further effect on liver triacylglyceride, liver/body weight ratio nor on liver malondialdehyde level and serum alanine aminotransferase activity. In C3-/- mice alcohol-induced liver steatosis was reduced also after an acute alcohol challenge. In both wild type and C3-/- mice ethanol markedly reduced serum cholesterol and ApoA-I levels, phospholipid transfer protein activity and hepatic mRNA levels of fatty acid binding proteins and fatty acid -oxidation enzymes. In contrast, exclusively in C3-/- mice, ethanol treatment increased serum and liver adiponectin levels but down-regulated the expression of transcripts of lipogenic enzymes, adiponectin receptor 2 and adipose differentiation-related protein and up-regulated phospholipase D1. In conclusion, this study has demonstrated that the complement system is involved in the development of alcohol-induced liver injury. Chronic alcohol exposure causes local complement activation and induction of mRNA expression of classical and alternative pathway components in the liver. In contrast expression of the terminal pathway components and soluble regulators were decreased. A deficient terminal complement pathway predisposes to alcoholic liver damage and promotes a pro-inflammatory cytokine response. Complement component C3 contributes to the development of alcohol-induced fatty liver and its consequences by affecting regulatory and specific transcription factors of lipid homeostasis.
Resumo:
Natural selection generally operates at the level of the individual, or more specifically at the level of the gene. As a result, individual selection does not always favour traits which benefit the population or species as a whole. The spread of an individual gene may even act to the detriment of the organism in which it finds. Thus selection at the level of the individual can affect processes at the level of the organism, group or even at the level of the species. As most behaviours ultimately affect births, deaths and the distribution of individuals, it seems inevitable that behavioural decisions will have an impact on population dynamics and population densities. Behavioural decisions can often involve costs through allocation of energy into behavioural strategies, such as the investment into armaments involved in fighting over resources or increased mortality due to injury or increased predation risk. Similarly, behaviour may act o to benefit the population, in terms of higher survival and increased fecundity. Examples include increased investment through parental care, choosing a mate based on the nuptial gifts they may supply and choosing territories in the face of competition. Investigating the impact of behaviour on population ecology may seem like a trivial task, but it is likely to have important consequences at different levels. For example, antagonistic behaviour may occasionally become so extreme that it increases the risk of extinction, and such extinction risk may have important implications for conservation. As a corollary, any such behaviour may also act as a macroevolutionary force, weeding out populations with traits which, whilst beneficial to the individuals in the short term, ultimately result in population extinction. In this thesis, I examine how behaviours, specifically conflict and competition over a resource and aspects of behaviour involved in sexual selection, can affect population densities, and what the implications are for the evolution and ecology of the populations in question. It is found that both behaviours related to individual conflict and mating strategies can have an effect at the level of the population, but that various factors, such as a feedback between selection and population densities or macroevolution caused by species extinctions, may act to limit the intensity of conflicts that we observe in nature.
Resumo:
The term acclimation has been used with several connotations in the field of acclimatory physiology. An attempt has been made, in this paper, to define precisely the term “acclimation” for effective modelling of acclimatory processes. Acclimation is defined with respect to a specific variable, as cumulative experience gained by the organism when subjected to a step change in the environment. Experimental observations on a large number of variables in animals exposed to sustained stress, show that after initial deviation from the basal value (defined as “growth”), the variables tend to return to basal levels (defined as “decay”). This forms the basis for modelling biological responses in terms of their growth and decay. Hierarchical systems theory as presented by Mesarovic, Macko & Takahara (1970) facilitates modelling of complex and partially characterized systems. This theory, in conjunction with “growth-decay” analysis of biological variables, is used to model temperature regulating system in animals exposed to cold. This approach appears to be applicable at all levels of biological organization. Regulation of hormonal activity which forms a part of the temperature regulating system, and the relationship of the latter with the “energy” system of the animal of which it forms a part, are also effectively modelled by this approach. It is believed that this systematic approach would eliminate much of the current circular thinking in the area of acclimatory physiology.
Resumo:
A one-step synthesis of Ga2O3 nanorods by heating molten gallium in ambient air at high temperatures is presented. The high-temperature synthesis creates oxygen vacancies and incorporates nitrogen from the environment. The oxygen vacancy in Ga2O3 is responsible for the emission in the blue-green region, while nitrogen in Ga2O3 is responsible for red emission.
Resumo:
Targeted nanomedicines offer a strategy for greatly enhancing accumulation of a therapeutic within a specific tissue in animals. In this study, we report on the comparative targeting efficiency toward prostate-specific membrane antigen (PSMA) of a number of different ligands that are covalently attached by the same chemistry to a polymeric nanocarrier. The targeting ligands included a small molecule (glutamate urea), a peptide ligand, and a monoclonal antibody (J591). A hyperbranched polymer (HBP) was utilized as the nanocarrier and contained a fluorophore for tracking/analysis, whereas the pendant functional chain-ends provided a handle for ligand conjugation. Targeting efficiency of each ligand was assessed in vitro using flow cytometry and confocal microscopy to compare degree of binding and internalization of the HBPs by human prostate cancer (PCa) cell lines with different PSMA expression status (PC3-PIP (PSMA+) and PC3-FLU (PSMA−). The peptide ligand was further investigated in vivo, in which BALB/c nude mice bearing subcutaneous PC3-PIP and PC3-FLU PCa tumors were injected intravenously with the HBP-peptide conjugate and assessed by fluorescence imaging. Enhanced accumulation in the tumor tissue of PC3-PIP compared to PC3-FLU highlighted the applicability of this system as a future imaging and therapeutic delivery vehicle.
Resumo:
Although several authors have implicated 3-hydroxyanthranilic acid (3-OHA) as an intermediate in tryptophaniacin pathway in animals (Kaplan, 1961), alternative pathways of metabolism of this compound have not been fully explored. Madhusudanan Nair obtained an enzyme from spinach leaves which could convert 3-OHA to cinnabarinic acid (private communication). Viollier and Süllmann (1950) reported the conversion of 3-OHA to an unidentified red compound by rat liver homogenates. The present investigation describes the identification of this product as cinnabarinic acid (2-amino-3-H-isophenoxazine-3-one-1,9-dicarboxylic acid). Cinnabarinic acid is known to occur in nature along with cinnabarin is olated from the fungus Polystictus sanguineus (Gripenberg et al., 1957; Gripenberg, 1958).
Resumo:
The utility of rice husk as an adsorbent for metal ions such as iron, zinc and copper from acid mine water was assessed. The adsorption isotherms exhibited Langmuirian behavior and were endothermic in nature. The free energy values for adsorption of the chosen metal ions onto rice husk were found to be highly negative attesting to favorable interaction. Over 99% Fe3+, 98% of Fe2+ and Zn2+ and 95% Cu2+ uptake was achieved from acid mine water, with a concomitant increase in the pH value by two units using rice husk. The remediation studies carried out on acid mine water and simulated acid mine water pretreated with rice husk indicated successful growth of Desulfotomaculum nigrificans (D. nigrificans). The amount of sulphate bioreduction in acid mine water at an initial pH of 5.3 was enhanced by D. nigrificans from 21% to 40% in the presence of rice husk filtrate supplemented with carbon and nitrogen. In simulated acid mine water with fortified husk filtrate, the sulphate reduction was even more extensive, with an enhancement to 73%. Concurrently, almost 90% Fe2+, 89% Zn2+ and 75% Cu2+ bioremoval was attained from simulated acid mine water. Metal adsorption by rice husk was confirmed in desorption experiments in which almost complete removal of metal ions from the rice husk was achieved after two elutions using 1 M HCl. The possible mechanisms of metal ion adsorption onto rice husk and sulphate reduction using D. nigrificans are discussed.
Resumo:
Materials with high thermal conductivity and thermal expansion coefficient matching with that of Si or GaAs are being used for packaging high density microcircuits due to their ability of faster heat dissipation. Al/SiC is gaining wide acceptance as electronic packaging material due to the fact that its thermal expansion coefficient can be tailored to match with that of Si or GaAs by varying the Al:SiC ratio while maintaining the thermal conductivity more or less the same. In the present work, Al/SiC microwave integrated circuit (MIC) carriers have been fabricated by pressureless infiltration of Al-alloy into porous SiC preforms in air. This new technique provides a cheaper alternative to pressure infiltration or pressureless infiltration in nitrogen in producing Al/SiC composites for electronic packaging applications. Al-alloy/65vol% SiC composite exhibited a coefficient of thermal expansion of 7 x 10(-6) K-1 (25 degrees C-100 degrees C) and a thermal conductivity of 147 Wm(-1) K-1 at 30 degrees C. The hysteresis observed in thermal expansion coefficient of the composite in the temperature range 100 degrees C-400 degrees C has been attributed to the presence of thermal residual stresses in the composite. Thermal diffusivity of the composite measured over the temperature range from 30 degrees C to 400 degrees C showed a 55% decrease in thermal diffusivity with temperature. Such a large decrease in thermal diffusivity with temperature could be due to the presence of micropores, microcracks, and decohesion of the Al/SiC interfaces in the microstructure (all formed during cooling from the processing temperature). The carrier showed satisfactory performance after integrating it into a MIC.