947 resultados para Neural Cell-adhesion
Resumo:
Pure poly(lactide-co-glycolide) and polystyrene surfaces are not very suitable to support cell adhesion/ spreading owing to their hydrophobic nature and low surface energy. The interior surfaces of large porous 3D scaffolds were modified and activated using radio-frequency, low-pressure air plasma. An increase in the wettability of the surface was observed after exposure to air plasma, as indicated by the decrease in the contact angles of the wet porous system. The surface composition of the plasma-treated polymers was studied using X-ray photoelectron spectroscopy. pH-dependent zeta-potential measurements confirm the presence of an increased number of functional groups. However, the plasma-treated surfaces have a less acidic character than the original polymer surfaces as seen by a shift in their isoelectric point. Zeta-potential, as well as contact angle measurements, on 3D scaffolds confirm that plasma treatment is a useful tool to modify the surface properties throughout the interior of large scaffolds. © 2008 Wiley Periodicals, Inc.
Resumo:
Porous 3D polymer scaffolds prepared by TIPS from PLGA (53:47) and PS are intrinsically hydrophobic which prohibits the wetting of such porous media by water. This limits the application of these materials for the fabrication of scaffolds as supports for cell adhesion/spreading. Here we demonstrate that the interior surfaces of polymer scaffolds can be effectively modified using atmospheric air plasma (AP). Polymer films (2D) were also modified as control. The surface properties of wet 2D and 3D scaffolds were characterised using zeta-potential and wettability measurements. These techniques were used as the primary screening methods to assess surface chemistry and the wettability of wet polymer constructs prior and after the surface treatment. The surfaces of the original polymers are rather hydrophobic as highlighted but contain acidic functional groups. Increased exposure to AP improved the water wetting of the treated surfaces because of the formation of a variety of oxygen and nitrogen containing functions. The morphology and pore structure was assessed using SEM and a liquid displacement test. The PLGA and PS foam samples have central regions which are open porous interconnected networks with maximum pore diameters of 49 μm for PLGA and 73 μm for PS foams. (Figure Presented) © 2007 Wiley-VCH Verlag GmbH & Co. KGaA.
Resumo:
Little is known of the functions of caspases in mediating the surface changes required for phagocytosis of dying cells. Here we investigate the role played by the effector caspase, caspase-3 in this process using the caspase-3-defective MCF-7 breast carcinoma line and derived caspase-3-expressing transfectants. Our results indicate that, while certain typical features of apoptosis induced by etoposide – namely classical morphological changes and the ability to degrade DNA into oligonucleosomal fragments – are caspase-3-dependent, loss of cell adhesion to plastic and the capacity to interact with, and to be phagocytosed by, human monocyte-derived macrophages – both by CD14-dependent and CD14-independent mechanisms – do not require caspase-3. Furthermore, both etoposide-induced caspase-3-positive and -negative MCF-7 cells suppressed proinflammatory cytokine release by macrophages. These results demonstrate directly that cell surface changes that are sufficient for anti-inflammatory clearance by human macrophages can be regulated independently of stereotypical features of the apoptosis programme that require caspase-3.
Resumo:
Tissue transglutaminase (TG2) is a multifunctional protein cross-linking enzyme that has been implicated in apoptotic cell clearance but is also important in many other cell functions including cell adhesion, migration and monocyte to macrophage differentiation. Cell surface-associated TG2 regulates cell adhesion and migration, via its association with receptors such as syndecan-4 and β1 and β3 integrins. Whilst defective apoptotic cell clearance has been described in TG2-deficient mice, the precise role of TG2 in apoptotic cell clearance remains ill-defined. Our work addresses the role of macrophage extracellular TG2 in apoptotic cell corpse clearance. Here we reveal TG2 expression and activity (cytosolic and cell surface) in human macrophages and demonstrate that inhibitors of protein crosslinking activity reduce macrophage clearance of dying cells. We show also that cell-impermeable TG2 inhibitors significantly inhibit the ability of macrophages to migrate and clear apoptotic cells through reduced macrophage recruitment to, and binding of, apoptotic cells. Association studies reveal TG2-syndecan-4 interaction through heparan sulphate side chains, and knockdown of syndecan-4 reduces cell surface TG2 activity and apoptotic cell clearance. Furthermore, inhibition of TG2 activity reduces crosslinking of CD44, reported to augment AC clearance. Thus our data define a role for TG2 activity at the surface of human macrophages in multiple stages of AC clearance and we propose that TG2, in association with heparan sulphates, may exert its effect on AC clearance via a mechanism involving the crosslinking of CD44.
Resumo:
This thesis is concerned with the nature of biomaterial interactions with compromised host tissue sites. Both ocular and dermal tissues can be wounded, following injury, disease or surgery, and consequently require the use of a biomaterial. Clear analogies exist between the cornea/tear film/contact lens and the dermal wound bed/wound fluid/skin adhesive wound dressing. The work described in this thesis builds upon established biochemistry to examine specific aspects of the interaction of biomaterials with compromised ocular and dermal tissue sites, with a particular focus on the role of vitronectin. Vitronectin is a prominent cell adhesion glycoprotein present in both tear fluid and wound fluid, and has a role in the regulation and upregulation of plasmin. The interaction of contact lenses with the cornea was assessed by a novel on-lens cell-based vitronectin assay technique. Vitronectin mapping showed that vitronectin-mediated cell adhesion to contact lens surfaces was due to the contact lens-corneal mechanical interaction rather than deposition out of the tear film. This deposition is associated predominantly with the peripheral region of the posterior contact lens surface. The locus of vitronectin deposition on the contact lens surface, which is affected by material modulus, is potentially an important factor in the generation of plasmin in the posterior tear film. Use of the vitronectin mapping technique on ex vivo bandage contact lenses revealed greater vitronectin-mediated cell adhesion to the contact lens surfaces in comparison to lenses worn in the healthy eye. The results suggest that vitronectin is more readily deposited from the impaired corneal tissue bed than the intact healthy tissue bed. Significantly, subjects with a deficient tear film were found to deposit high vitronectin-mediated cell adhesion levels to the BCL surface, thus highlighting the influence of the contact lens-tissue interaction upon deposition. Biomimetic principles imply that adhesive materials for wound applications, including hydrogels and hydrocolloids, should closely match the surface energy parameters of skin. The surface properties of hydrocolloid adhesives were found to be easily modified by contact with siliconised plastic release liners. In contrast, paper release liners did not significantly affect the adhesive surface properties. In order to characterise such materials in the actual wound environment, which is an extremely challenging task, preliminary considerations for the design of an artificial wound fluid model from an animal serum base were addressed.
Resumo:
Background - Aquaporin (AQP) water channels are best known as passive transporters of water that are vital for water homeostasis. Scope of review - AQP knockout studies in whole animals and cultured cells, along with naturally occurring human mutations suggest that the transport of neutral solutes through AQPs has important physiological roles. Emerging biophysical evidence suggests that AQPs may also facilitate gas (CO2) and cation transport. AQPs may be involved in cell signalling for volume regulation and controlling the subcellular localization of other proteins by forming macromolecular complexes. This review examines the evidence for these diverse functions of AQPs as well their physiological relevance. Major conclusions - As well as being crucial for water homeostasis, AQPs are involved in physiologically important transport of molecules other than water, regulation of surface expression of other membrane proteins, cell adhesion, and signalling in cell volume regulation. General significance - Elucidating the full range of functional roles of AQPs beyond the passive conduction of water will improve our understanding of mammalian physiology in health and disease. The functional variety of AQPs makes them an exciting drug target and could provide routes to a range of novel therapies.
Resumo:
As an extracellular second messenger, nitric oxide (NO) mediates the modification of proteins through nitrosylation of cysteine andtyrosine residues. Tissue Transglutaminase (TG2) is a Ca2+ activated, sulfhydryl rich protein with 18 free cysteine residues, which catalyzes ε-(γ glutamyl)lysine crosslink between extracellular and intracellular proteins. NO can nitrosylate up to 15 of the cysteine residues in TG2, leading to the irreversible inactivation of the enzyme activity. The interplay between these two agents was revealed for the first time by our study showing that NO inhibited the TG2-induced transcriptional activation of TGFb1and extracellular matrix (ECM) protein synthesis by nitrosylating TG2 in an inactive confirmation with inert catalytic activity. However, nitrosylated TG2 was still able to serve as a novel cell adhesion protein. In the light of our previous findings, in this study we aim to elucidate the NO modified function of TG2 in cell migration using an in vitro model mimicking the tissue matrix remodeling phases of wound healing. Using transfected fibroblasts expressing TG2 under the control of the tetracycline-off promoter, we demonstrate that upregulation of TG2 expression and activity inhibited the cell migration through the activation of TGFβ1. Increased TG2 activity led to arise in the biosynthesis and activity of the gelatinases, MMP-2 andMMP-9, while decreasing the biosynthesis and activity of the col-lagenases MMP-1a and MMP-13. NO donor S-Nitroso-N-acetyl-penicillamine (SNAP) treatment relieved the TG2 obstructed-cellmigration by blocking the TG2 enzyme activity. In addition,decrease in TG2 activity due to nitrosylation led to an inhibition of TGFβ1, which in turn affected the pattern of MMP activation. Recent evidence suggests that, once in complex with fibronectin in the ECM, TG2 can interact with syndecan-4 or integrinβ-1and regulate the cell adhesion. In the other part of this study, the possible role of nitrosylated TG2 on the regulation of cell migration during wound healing was investigated with respect to its interactions with integrin β1 (ITGβ1) and syndecan-4 (SDC4). Treatment with TG2 inhibitor Z-DON resulted in a 50% decrease in the TG2 interaction with ITGB1 and SDC4, while increasing concentrations of SNAP firstly led to a substantial decrease and then completely abolished the TG2/ITGβ1 and TG2/SDC4 complex formation on the cell surface. Taken together, data obtained from this study suggests that nitrosylation of TG2 leads to a change not only in the binding partners of TG2 on cell surface but also in TGFβ1-dependent MMP activation, which give rise to an increase in the migration potential of fibroblasts.
Resumo:
The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems. © 2010 Elsevier Inc.
Resumo:
Modulation of cell : cell junctions is a key event in cutaneous wound repair. In this study we report that activation of the epidermal growth factor (EGF) receptor disrupts cell : cell adhesion, but with different kinetics and fates for the desmosomal cadherin desmoglein and for E-cadherin. Downregulation of desmoglein preceded that of E-cadherin in vivo and in an EGF-stimulated in vitro wound reepithelialization model. Dual immunofluorescence staining revealed that neither E-cadherin nor desmoglein-2 internalized with the EGF receptor, or with one another. In response to EGF, desmoglein-2 entered a recycling compartment based on predominant colocalization with the recycling marker Rab11. In contrast, E-cadherin downregulation was accompanied by cleavage of the extracellular domain. A broad-spectrum matrix metalloproteinase inhibitor protected E-cadherin but not the desmosomal cadherin, desmoglein-2, from EGF-stimulated disruption. These findings demonstrate that although activation of the EGF receptor regulates adherens junction and desmosomal components, this stimulus downregulates associated cadherins through different mechanisms.
Novel P(3HB) Composite Films Containing Bioactive Glass Nanoparticles for Wound Healing Applications
Resumo:
Bioactive glass (BG) is considered an ideal material for haemostasis as it releases Ca2+ ions upon hydration, which is required to support thrombosis. In this study the effect of the presence of the BG nanoparticles in P(3HB) microsphere films on the structural properties, thermal properties and biocompatibility of the films were studied. The nanoscaled bioactive glass with a high surface area was also tested for its in vitro haemostatic efficacy and was found to be able to successfully reduce the clot detection time. In an effort to study the effect of the roughness induced by the formation of HA on the cellular functions such as cell adhesion, cell mobility and cell differentiation, the composite films were immersed in SBF for a period of 1, 3 and 7 days. From the SEM images the surface of the P(3HB)/n-BG composite microsphere films appeared fairly uniform and smooth on day 1, however on day 3 and day 7 a rough and uneven surface was observed. The presence of HA on the composite microsphere films on day 3 and day 7 influenced the surface roughness of the films. However, when the P(3HB)/n-BG composite microspheres with enhanced surface roughness were tested for biocompatibility, reduced amount of protein adsorption and cell adhesion were observed. This study thus revealed that there is an optimal surface roughness for the P(3HB) microsphere films for increased cell adhesion, beyond which it could be deleterious for cell adhesion and differentiation.
Resumo:
Cardiac tissue engineering (CTE) is currently a prime focus of research due to an enormous clinical need. In this work, a novel functional material, Poly(3-hydroxyoctanoate), P(3HO), a medium chain length polyhydroxyalkanoate (PHA), produced using bacterial fermentation, was studied as a new potential material for CTE. Engineered constructs with improved mechanical properties, crucial for supporting the organ during new tissue regeneration, and enhanced surface topography, to allow efficient cell adhesion and proliferation, were fabricated. Our results showed that the mechanical properties of the final patches were close to that of cardiac muscle. Biocompatibility of the P(3HO) neat patches, assessed using Neonatal ventricular rat myocytes (NVRM), showed that the polymer was as good as collagen in terms of cell viability, proliferation and adhesion. Enhanced cell adhesion and proliferation properties were observed when porous and fibrous structures were incorporated to the patches. Also, no deleterious effect was observed on the adults cardiomyocytes’ contraction when cardiomyocytes were seeded on the P(3HO) patches. Hence, P(3HO) based multifunctional cardiac patches are promising constructs for efficient CTE. This work will provide a positive impact on the development of P(3HO) and other PHAs as a novel new family of biodegradable functional materials with huge potential in a range of different biomedical applications, particularly CTE, leading to further interest and exploitation of these materials.
Resumo:
Choanoflagellates are the closest single-celled relatives of animals and provide fascinating insights into developmental processes in animals. Two species, the choanoflagellates Monosiga brevicollis and Salpingoeca rosetta are emerging as promising model organisms to reveal the evolutionary origin of key animal innovations. In this review, we highlight how choanoflagellates are used to study the origin of multicellularity in animals. The newly available genomic resources and functional techniques provide important insights into the function of choanoflagellate pre- and postsynaptic proteins, cell-cell adhesion and signaling molecules and the evolution of animal filopodia and thus underscore the relevance of choanoflagellate models for evolutionary biology, neurobiology and cell biology research.
Resumo:
Choanoflagellates are the closest single-celled relatives of animals and provide fascinating insights into developmental processes in animals. Two species, the choanoflagellates Monosiga brevicollis and Salpingoeca rosetta are emerging as promising model organisms to reveal the evolutionary origin of key animal innovations. In this review, we highlight how choanoflagellates are used to study the origin of multicellularity in animals. The newly available genomic resources and functional techniques provide important insights into the function of choanoflagellate pre- and postsynaptic proteins, cell-cell adhesion and signaling molecules and the evolution of animal filopodia and thus underscore the relevance of choanoflagellate models for evolutionary biology, neurobiology and cell biology research.
Resumo:
Electrospun nanofibers are a promising material for ligamentous tissue engineering, however weak mechanical properties of fibers to date have limited their clinical usage. The goal of this work was to modify electrospun nanofibers to create a robust structure that mimics the complex hierarchy of native tendons and ligaments. The scaffolds that were fabricated in this study consisted of either random or aligned nanofibers in flat sheets or rolled nanofiber bundles that mimic the size scale of fascicle units in primarily tensile load bearing soft musculoskeletal tissues. Altering nanofiber orientation and geometry significantly affected mechanical properties; most notably aligned nanofiber sheets had the greatest modulus; 125% higher than that of random nanofiber sheets; and 45% higher than aligned nanofiber bundles. Modifying aligned nanofiber sheets to form aligned nanofiber bundles also resulted in approximately 107% higher yield stresses and 140% higher yield strains. The mechanical properties of aligned nanofiber bundles were in the range of the mechanical properties of the native ACL: modulus=158±32MPa, yield stress=57±23MPa and yield strain=0.38±0.08. Adipose derived stem cells cultured on all surfaces remained viable and proliferated extensively over a 7 day culture period and cells elongated on nanofiber bundles. The results of the study suggest that aligned nanofiber bundles may be useful for ligament and tendon tissue engineering based on their mechanical properties and ability to support cell adhesion, proliferation, and elongation.
Resumo:
The Philadelphia negative myeloproliferative neoplasms include polycythaemia vera (PV), essential thrombocytopenia (ET) and primary myelofibrosis (PMF). Patients with these conditions were mainly thought to harbour JAK2V617F mutations or an Myeloproliferative leukaemia (MPL) substitution. In 2013, two revolutionary studies identified recurrent mutations in a gene that encodes the protein calreticulin (CALR). This mutation was detected in patients with PMF and ET with non-mutated JAK2 or MPL but was absent in patients with PV. The CALR gene encodes the calreticulin protein, which is a multifactorial protein, mainly located in the endoplasmic reticulum in chromosome 19 and regulates calcium homeostasis, chaperones and has also been implicated in multiple cellular processes including cell signalling, regulation of gene expression, cell adhesion, autoimmunity and apoptosis. Somatic 52 bp deletions and recurrent 52 bp insertion mutations in CALR were detected and all resulted in frameshift and clusters in exon 9 of the gene. This review will summarise the current knowledge on the CALR gene and mutation of the gene in pathological conditions and patient phenotypes.