939 resultados para Network simulator 3
Resumo:
This work presents the development of an in-plane vertical micro-coaxial probe using bulk micromachining technique for high frequency material characterization. The coaxial probe was fabricated in a silicon substrate by standard photolithography and a deep reactive ion etching (DRIE) technique. The through-hole structure in the form of a coaxial probe was etched and metalized with a diluted silver paste. A co-planar waveguide configuration was integrated with the design to characterize the probe. The electrical and RF characteristics of the coaxial probe were determined by simulating the probe design in Ansoft's High Frequency Structure Simulator (HFSS). The reflection coefficient and transducer gain performance of the probe was measured up to 65 GHz using a vector network analyzer (VNA). The probe demonstrated excellent results over a wide frequency band, indicating its ability to integrate with millimeter wave packaging systems as well as characterize unknown materials at high frequencies. The probe was then placed in contact with 3 materials where their unknown permittivities were determined. To accomplish this, the coaxial probe was placed in contact with the material under test and electromagnetic waves were directed to the surface using the VNA, where its reflection coefficient was then determined over a wide frequency band from dc-to -65GHz. Next, the permittivity of each material was deduced from its measured reflection coefficients using a cross ratio invariance coding technique. The permittivity results obtained when measuring the reflection coefficient data were compared to simulated permittivity results and agreed well. These results validate the use of the micro-coaxial probe to characterize the permittivity of unknown materials at high frequencies up to 65GHz.
Resumo:
Online Social Network (OSN) services provided by Internet companies bring people together to chat, share the information, and enjoy the information. Meanwhile, huge amounts of data are generated by those services (they can be regarded as the social media ) every day, every hour, even every minute, and every second. Currently, researchers are interested in analyzing the OSN data, extracting interesting patterns from it, and applying those patterns to real-world applications. However, due to the large-scale property of the OSN data, it is difficult to effectively analyze it. This dissertation focuses on applying data mining and information retrieval techniques to mine two key components in the social media data — users and user-generated contents. Specifically, it aims at addressing three problems related to the social media users and contents: (1) how does one organize the users and the contents? (2) how does one summarize the textual contents so that users do not have to go over every post to capture the general idea? (3) how does one identify the influential users in the social media to benefit other applications, e.g., Marketing Campaign? The contribution of this dissertation is briefly summarized as follows. (1) It provides a comprehensive and versatile data mining framework to analyze the users and user-generated contents from the social media. (2) It designs a hierarchical co-clustering algorithm to organize the users and contents. (3) It proposes multi-document summarization methods to extract core information from the social network contents. (4) It introduces three important dimensions of social influence, and a dynamic influence model for identifying influential users.
Resumo:
In recent years, a surprising new phenomenon has emerged in which globally-distributed online communities collaborate to create useful and sophisticated computer software. These open source software groups are comprised of generally unaffiliated individuals and organizations who work in a seemingly chaotic fashion and who participate on a voluntary basis without direct financial incentive. The purpose of this research is to investigate the relationship between the social network structure of these intriguing groups and their level of output and activity, where social network structure is defined as 1) closure or connectedness within the group, 2) bridging ties which extend outside of the group, and 3) leader centrality within the group. Based on well-tested theories of social capital and centrality in teams, propositions were formulated which suggest that social network structures associated with successful open source software project communities will exhibit high levels of bridging and moderate levels of closure and leader centrality. The research setting was the SourceForge hosting organization and a study population of 143 project communities was identified. Independent variables included measures of closure and leader centrality defined over conversational ties, along with measures of bridging defined over membership ties. Dependent variables included source code commits and software releases for community output, and software downloads and project site page views for community activity. A cross-sectional study design was used and archival data were extracted and aggregated for the two-year period following the first release of project software. The resulting compiled variables were analyzed using multiple linear and quadratic regressions, controlling for group size and conversational volume. Contrary to theory-based expectations, the surprising results showed that successful project groups exhibited low levels of closure and that the levels of bridging and leader centrality were not important factors of success. These findings suggest that the creation and use of open source software may represent a fundamentally new socio-technical development process which disrupts the team paradigm and which triggers the need for building new theories of collaborative development. These new theories could point towards the broader application of open source methods for the creation of knowledge-based products other than software.
Resumo:
This dissertation establishes a novel data-driven method to identify language network activation patterns in pediatric epilepsy through the use of the Principal Component Analysis (PCA) on functional magnetic resonance imaging (fMRI). A total of 122 subjects’ data sets from five different hospitals were included in the study through a web-based repository site designed here at FIU. Research was conducted to evaluate different classification and clustering techniques in identifying hidden activation patterns and their associations with meaningful clinical variables. The results were assessed through agreement analysis with the conventional methods of lateralization index (LI) and visual rating. What is unique in this approach is the new mechanism designed for projecting language network patterns in the PCA-based decisional space. Synthetic activation maps were randomly generated from real data sets to uniquely establish nonlinear decision functions (NDF) which are then used to classify any new fMRI activation map into typical or atypical. The best nonlinear classifier was obtained on a 4D space with a complexity (nonlinearity) degree of 7. Based on the significant association of language dominance and intensities with the top eigenvectors of the PCA decisional space, a new algorithm was deployed to delineate primary cluster members without intensity normalization. In this case, three distinct activations patterns (groups) were identified (averaged kappa with rating 0.65, with LI 0.76) and were characterized by the regions of: 1) the left inferior frontal Gyrus (IFG) and left superior temporal gyrus (STG), considered typical for the language task; 2) the IFG, left mesial frontal lobe, right cerebellum regions, representing a variant left dominant pattern by higher activation; and 3) the right homologues of the first pattern in Broca's and Wernicke's language areas. Interestingly, group 2 was found to reflect a different language compensation mechanism than reorganization. Its high intensity activation suggests a possible remote effect on the right hemisphere focus on traditionally left-lateralized functions. In retrospect, this data-driven method provides new insights into mechanisms for brain compensation/reorganization and neural plasticity in pediatric epilepsy.
Resumo:
In the framework of the global energy balance, the radiative energy exchanges between Sun, Earth and space are now accurately quantified from new satellite missions. Much less is known about the magnitude of the energy flows within the climate system and at the Earth surface, which cannot be directly measured by satellites. In addition to satellite observations, here we make extensive use of the growing number of surface observations to constrain the global energy balance not only from space, but also from the surface. We combine these observations with the latest modeling efforts performed for the 5th IPCC assessment report to infer best estimates for the global mean surface radiative components. Our analyses favor global mean downward surface solar and thermal radiation values near 185 and 342 Wm**-2, respectively, which are most compatible with surface observations. Combined with an estimated surface absorbed solar radiation and thermal emission of 161 Wm**-2 and 397 Wm**-2, respectively, this leaves 106 Wm**-2 of surface net radiation available for distribution amongst the non-radiative surface energy balance components. The climate models overestimate the downward solar and underestimate the downward thermal radiation, thereby simulating nevertheless an adequate global mean surface net radiation by error compensation. This also suggests that, globally, the simulated surface sensible and latent heat fluxes, around 20 and 85 Wm**-2 on average, state realistic values. The findings of this study are compiled into a new global energy balance diagram, which may be able to reconcile currently disputed inconsistencies between energy and water cycle estimates.
Resumo:
Postprint
Resumo:
We propose a novel low-complexity artificial neural network (ANN)-based nonlinear equalizer (NLE) for coherent optical orthogonal frequency-division multiplexing (CO-OFDM) and compare it with the recent inverse Volterra-series transfer function (IVSTF)-based NLE over up to 1000 km of uncompensated links. Demonstration of ANN-NLE at 80-Gb/s CO-OFDM using 16-quadrature amplitude modulation reveals a Q-factor improvement after 1000-km transmission of 3 and 1 dB with respect to the linear equalization and IVSTF-NLE, respectively.
Resumo:
In this dissertation, we develop a novel methodology for characterizing and simulating nonstationary, full-field, stochastic turbulent wind fields.
In this new method, nonstationarity is characterized and modeled via temporal coherence, which is quantified in the discrete frequency domain by probability distributions of the differences in phase between adjacent Fourier components.
The empirical distributions of the phase differences can also be extracted from measured data, and the resulting temporal coherence parameters can quantify the occurrence of nonstationarity in empirical wind data.
This dissertation (1) implements temporal coherence in a desktop turbulence simulator, (2) calibrates empirical temporal coherence models for four wind datasets, and (3) quantifies the increase in lifetime wind turbine loads caused by temporal coherence.
The four wind datasets were intentionally chosen from locations around the world so that they had significantly different ambient atmospheric conditions.
The prevalence of temporal coherence and its relationship to other standard wind parameters was modeled through empirical joint distributions (EJDs), which involved fitting marginal distributions and calculating correlations.
EJDs have the added benefit of being able to generate samples of wind parameters that reflect the characteristics of a particular site.
Lastly, to characterize the effect of temporal coherence on design loads, we created four models in the open-source wind turbine simulator FAST based on the \windpact turbines, fit response surfaces to them, and used the response surfaces to calculate lifetime turbine responses to wind fields simulated with and without temporal coherence.
The training data for the response surfaces was generated from exhaustive FAST simulations that were run on the high-performance computing (HPC) facilities at the National Renewable Energy Laboratory.
This process was repeated for wind field parameters drawn from the empirical distributions and for wind samples drawn using the recommended procedure in the wind turbine design standard \iec.
The effect of temporal coherence was calculated as a percent increase in the lifetime load over the base value with no temporal coherence.
Resumo:
We discuss the interactions among the various phases of network research design in the context of our current work using Mixed Methods and SNA on networks and rural economic development. We claim that there are very intricate inter-dependencies among the various phases of network research design - from theory and formulation of research questions right through to modes of analysis and interpretation. Through examples drawn from our work we illustrate how choices about methods for Sampling and Data Collection are influenced by these interdependencies.
Resumo:
Wireless Sensor Networks (WSNs) are currently having a revolutionary impact in rapidly emerging wearable applications such as health and fitness monitoring amongst many others. These types of Body Sensor Network (BSN) applications require highly integrated wireless sensor devices for use in a wearable configuration, to monitor various physiological parameters of the user. These new requirements are currently posing significant design challenges from an antenna perspective. This work addresses several design challenges relating to antenna design for these types of applications. In this thesis, a review of current antenna solutions for WSN applications is first presented, investigating both commercial and academic solutions. Key design challenges are then identified relating to antenna size and performance. A detailed investigation of the effects of the human body on antenna impedance characteristics is then presented. A first-generation antenna tuning system is then developed. This system enables the antenna impedance to be tuned adaptively in the presence of the human body. Three new antenna designs are also presented. A compact, low-cost 433 MHz antenna design is first reported and the effects of the human body on the impedance of the antenna are investigated. A tunable version of this antenna is then developed, using a higher performance, second-generation tuner that is integrated within the antenna element itself, enabling autonomous tuning in the presence of the human body. Finally, a compact sized, dual-band antenna is reported that covers both the 433 MHz and 2.45 GHz bands to provide improved quality of service (QoS) in WSN applications. To date, state-of-the-art WSN devices are relatively simple in design with limited antenna options available, especially for the lower UHF bands. In addition, current devices have no capability to deal with changing antenna environments such as in wearable BSN applications. This thesis presents several contributions that advance the state-of-the-art in this area, relating to the design of miniaturized WSN antennas and the development of antenna tuning solutions for BSN applications.
Resumo:
Two concepts in rural economic development policy have been the focus of much research and policy action: the identification and support of clusters or networks of firms and the availability and adoption by rural businesses of Information and Communication Technologies (ICT). From a theoretical viewpoint these policies are based on two contrasting models, with clustering seen as a process of economic agglomeration, and ICT-mediated communication as a means of facilitating economic dispersion. The study’s conceptual framework is based on four interrelated elements: location, interaction, knowledge, and advantage, together with the concept of networks which is employed as an operationally and theoretically unifying concept. The research questions are developed in four successive categories: Policy, Theory, Networks, and Method. The questions are approached using a study of two contrasting groups of rural small businesses in West Cork, Ireland: (a) Speciality Foods, and (b) firms in Digital Products and Services. The study combines Social Network Analysis (SNA) with Qualitative Thematic Analysis, using data collected from semi-structured interviews with 58 owners or managers of these businesses. Data comprise relational network data on the firms’ connections to suppliers, customers, allies and competitors, together with linked qualitative data on how the firms established connections, and how tacit and codified knowledge was sourced and utilised. The research finds that the key characteristics identified in the cluster literature are evident in the sample of Speciality Food businesses, in relation to flows of tacit knowledge, social embedding, and the development of forms of social capital. In particular the research identified the presence of two distinct forms of collective social capital in this network, termed “community” and “reputation”. By contrast the sample of Digital Products and Services businesses does not have the form of a cluster, but matches more closely to dispersive models, or “chain” structures. Much of the economic and social structure of this set of firms is best explained in terms of “project organisation”, and by the operation of an individual rather than collective form of “reputation”. The rural setting in which these firms are located has resulted in their being service-centric, and consequently they rely on ICT-mediated communication in order to exchange tacit knowledge “at a distance”. It is this factor, rather than inputs of codified knowledge, that most strongly influences their operation and their need for availability and adoption of high quality communication technologies. Thus the findings have applicability in relation to theory in Economic Geography and to policy and practice in Rural Development. In addition the research contributes to methodological questions in SNA, and to methodological questions about the combination or mixing of quantitative and qualitative methods.
Resumo:
Online Social Network (OSN) services provided by Internet companies bring people together to chat, share the information, and enjoy the information. Meanwhile, huge amounts of data are generated by those services (they can be regarded as the social media ) every day, every hour, even every minute, and every second. Currently, researchers are interested in analyzing the OSN data, extracting interesting patterns from it, and applying those patterns to real-world applications. However, due to the large-scale property of the OSN data, it is difficult to effectively analyze it. This dissertation focuses on applying data mining and information retrieval techniques to mine two key components in the social media data — users and user-generated contents. Specifically, it aims at addressing three problems related to the social media users and contents: (1) how does one organize the users and the contents? (2) how does one summarize the textual contents so that users do not have to go over every post to capture the general idea? (3) how does one identify the influential users in the social media to benefit other applications, e.g., Marketing Campaign? The contribution of this dissertation is briefly summarized as follows. (1) It provides a comprehensive and versatile data mining framework to analyze the users and user-generated contents from the social media. (2) It designs a hierarchical co-clustering algorithm to organize the users and contents. (3) It proposes multi-document summarization methods to extract core information from the social network contents. (4) It introduces three important dimensions of social influence, and a dynamic influence model for identifying influential users.
Resumo:
In the frame of the transnational ALPS-GPSQUAKENET project, a component of the Alpine Space Programme of the European Community Initiative Programme (CIP) INTERREG III B, the Deutsches Geodätisches Forschungsinstitut (DGFI) in Munich, Germany, installed in 2005 five continuously operating permanent GPS stations located along the northern Alps boundary in Bavaria. The main objective of the ALPS-GPSQUAKENET project was to build-up a high-performance transnational space geodetic network of Global Positioning System (GPS) receivers in the Alpine region (the so-called Geodetic Alpine Integrated Network, GAIN). Data from this network allows for studying crustal deformations in near real-time to monitor Earthquake hazard and improve natural disaster prevention. The five GPS stations operatied by DGFI are mounted on concrete pillars attached to solid rock. The names of the stations are (from west to east) Hochgrat (HGRA), Breitenberg (BREI), Fahrenberg (FAHR), Hochries (HRIE) and Wartsteinkopf (WART). The provided data series start from October 7, 2005. Data are stored with a temporal spacing of 15 seconds in daily RINEX files.
Resumo:
We describe the contemporary hydrography of the pan-Arctic land area draining into the Arctic Ocean, northern Bering Sea, and Hudson Bay on the basis of observational records of river discharge and computed runoff. The Regional Arctic Hydrographic Network data set, R-ArcticNET, is presented, which is based on 3754 recording stations drawn from Russian, Canadian, European, and U.S. archives. R-ArcticNET represents the single largest data compendium of observed discharge in the Arctic. Approximately 73% of the nonglaciated area of the pan-Arctic is monitored by at least one river discharge gage giving a mean gage density of 168 gages per 106 km2. Average annual runoff is 212 mm yr?1 with approximately 60% of the river discharge occurring from April to July. Gridded runoff surfaces are generated for the gaged portion of the pan-Arctic region to investigate global change signals. Siberia and Alaska showed increases in winter runoff during the 1980s relative to the 1960s and 1970s during annual and seasonal periods. These changes are consistent with observations of change in the climatology of the region. Western Canada experienced decreased spring and summer runoff.