922 resultados para NUCLEOTIDE POLYMORPHISMS
Resumo:
Ankylosing spondylitis is a common form of inflammatory arthritis predominantly affecting the spine and pelvis that occurs in approximately 5 out of 1,000 adults of European descent. Here we report the identification of three variants in the RUNX3, LTBR-TNFRSF1A and IL12B regions convincingly associated with ankylosing spondylitis (P < 5 × 10-8 in the combined discovery and replication datasets) and a further four loci at PTGER4, TBKBP1, ANTXR2 and CARD9 that show strong association across all our datasets (P < 5 × 10-6 overall, with support in each of the three datasets studied). We also show that polymorphisms of ERAP1, which encodes an endoplasmic reticulum aminopeptidase involved in peptide trimming before HLA class I presentation, only affect ankylosing spondylitis risk in HLA-B27-positive individuals. These findings provide strong evidence that HLA-B27 operates in ankylosing spondylitis through a mechanism involving aberrant processing of antigenic peptides.
Resumo:
Objectives. It has been shown previously that IL-23R variants are associated with AS. We conducted an extended analysis in the UK population and a meta-analysis with the previously published studies, in order to refine these IL-23R associations with AS. Methods. The UK case-control study included 730 new cases and 1331 healthy controls. In the extended study, the 730 cases were combined with 1088 published cases. Allelic associations were analysed using contingency tables. In the meta-analysis, 3482 cases and 3150 controls from four different published studies and the new UK cases were combined. DerSimonian-Laird test was used to calculate random effects pooled odds ratios (ORs). Results. In the UK case-control study with new cases, four of the eight SNPs showed significant associations, whereas in the extended UK study, seven of the eight IL-23R SNPs showed significant associations (P < 0.05) with AS, maximal with rs11209032 (P < 10-5, OR 1.3), when cases with IBD and/or psoriasis were excluded. The meta-analysis showed significant associations with all eight SNPs; the strongest associations were again seen not only with rs11209032 (P = 4.06 × 10-9, OR ∼1.2) but also with rs11209026 (P < 10-10, OR ∼0.6). Conclusions. IL-23R polymorphisms are clearly associated with AS, but the primary causal association(s) is(are) still not established. These polymorphisms could contribute either increased or decreased susceptibility to AS; functional studies will be required for their full evaluation. Additionally, observed stronger associations with SNPs rs11209026 and rs11465804 upon exclusion of IBD and/or psoriasis cases may represent an independent association with AS. © The Author 2009. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved.
Resumo:
A strong association between ERAP1 and ankylosing spondylitis (AS) was recently identified by the Wellcome Trust Case Control Consortium and the Australo-Anglo-American Spondylitis Consortium (WTCCC-TASC) study. ERAP1 is highly polymorphic with strong linkage disequilibrium evident across the gene. We therefore conducted a series of experiments to try to identify the primary genetic association(s) with ERAP1. We replicated the original associations in an independent set of 730 patients and 1021 controls, resequenced ERAP1 to define the full extent of coding polymorphisms and tested all variants in additional association studies. The genetic association with ERAP1 was independently confirmed; the strongest association was with rs30187 in the replication set (P = 3.4 × 103). When the data were combined with the original WTCCC-TASC study the strongest association was with rs27044 (P = 1.1 × 10-9). We identified 33 sequence polymorphisms in ERAP1, including three novel and eight known non-synonymous polymorphisms. We report several new associations between AS and polymorphisms distributed across ERAP1 from the extended case-control study, the most significant of which was with rs27434 (P = 4.7 × 10-7). Regression analysis failed to identify a primary association clearly; we therefore used data from HapMap to impute genotypes for an additional 205 non-coding SNPs located within and adjacent to ERAP1. A number of highly significant associations (P < 5 × 10-9) were identified in regulatory sequences which are good candidates for causing susceptibility to AS, possibly by regulating ERAP1 expression. © 2009 The Author(s).
Resumo:
INTRODUCTION Although the high heritability of BMD variation has long been established, few genes have been conclusively shown to affect the variation of BMD in the general population. Extreme truncate selection has been proposed as a more powerful alternative to unselected cohort designs in quantitative trait association studies. We sought to test these theoretical predictions in studies of the bone densitometry measures BMD, BMC, and femoral neck area, by investigating their association with members of the Wnt pathway, some of which have previously been shown to be associated with BMD in much larger cohorts, in a moderate-sized extreme truncate selected cohort (absolute value BMD Z-scores = 1.5-4.0; n = 344). MATERIALS AND METHODS Ninety-six tag-single nucleotide polymorphism (SNPs) lying in 13 Wnt signaling pathway genes were selected to tag common genetic variation (minor allele frequency [MAF] > 5% with an r(2) > 0.8) within 5 kb of all exons of 13 Wnt signaling pathway genes. The genes studied included LRP1, LRP5, LRP6, Wnt3a, Wnt7b, Wnt10b, SFRP1, SFRP2, DKK1, DKK2, FZD7, WISP3, and SOST. Three hundred forty-four cases with either high or low BMD were genotyped by Illumina Goldengate microarray SNP genotyping methods. Association was tested either by Cochrane-Armitage test for dichotomous variables or by linear regression for quantitative traits. RESULTS Strong association was shown with LRP5, polymorphisms of which have previously been shown to influence total hip BMD (minimum p = 0.0006). In addition, polymorphisms of the Wnt antagonist, SFRP1, were significantly associated with BMD and BMC (minimum p = 0.00042). Previously reported associations of LRP1, LRP6, and SOST with BMD were confirmed. Two other Wnt pathway genes, Wnt3a and DKK2, also showed nominal association with BMD. CONCLUSIONS This study shows that polymorphisms of multiple members of the Wnt pathway are associated with BMD variation. Furthermore, this study shows in a practical trial that study designs involving extreme truncate selection and moderate sample sizes can robustly identify genes of relevant effect sizes involved in BMD variation in the general population. This has implications for the design of future genome-wide studies of quantitative bone phenotypes relevant to osteoporosis.
Resumo:
Objectives. Extracellular inorganic pyrophosphate (ePPi) inhibits certain forms of pathological mineralization while promoting others. Three molecules involved in ePPi regulation are important candidates for the development of calcium pyrophosphate dihydrate chondrocalcinosis (CPPD CC). These include ANKH, ectonucleotide pyrophosphatase (ENPP1) and TNAP. We have previously showed that genetic variation in ANKH is a cause of autosomal dominant familial CC and also some sporadic cases of CPPD CC. We now investigate the possible role of ENPP1 and TNAP in CPPD CC. Methods. Exons, untranslated regions (UTR) and exon-intron boundaries of ENPP1 and TNAP were sequenced using ABI Big Dye chemistry on automated sequencers. Sixteen variants were identified (3 in ENPP1 and 13 in TNAP) and were subsequently genotyped in 128 sporadic Caucasian CPPD CC patients and 600 healthy controls using a combination of polymerase chain reaction/restriction fragment-length polymorphism analysis or using Taqman. Allele and genotype frequencies were compared between cases and controls using the χ 2 test. Linkage disequilibrium, haplotype and the single nucleotide polymorphism-specific analyses were also performed. This study had 80% power to detect an odds ratio of 2.2 or more at these loci. Results. No difference was observed in the allele or genotype frequencies between patients and controls at either ENPP1 or TNAP. Conclusions. Polymorphisms of ENPP1 and TNAP are not major determinants of susceptibility to CC in the population studied. Further studies of the aetiology of sporadic CPPD CC are required to determine its causes.
Resumo:
Context: Whether the action of estrogen in skeletal development depends on estrogen receptor α as encoded by the ESR1 gene is unknown. Objectives: The aim of this study was to establish whether the gain in area-adjusted bone mineral content (ABMC) in girls occurs in late puberty and to examine whether the magnitude of this gain is related to ESR1 polymorphisms. Design: We conducted a cross-sectional analysis. Setting: The study involved the Avon Longitudinal Study of Parents and Children (ALSPAC), a population-based prospective study. Participants: Participants included 3097 11-yr-olds with DNA samples, dual x-ray absorptiometry measurements, and pubertal stage information. Outcomes: Outcome measures included separate prespecified analyses in boys and girls of the relationship between ABMC derived from total body dual x-ray absorptiometry scans and Tanner stage and of the interaction between ABMC, Tanner stage, and ESR1 polymorphisms. Results: Total body less head and spinal ABMC were higher in girls in Tanner stages 4 and 5, compared with those in Tanner stages 1, 2, and 3. In contrast, height increased throughout puberty. No differences were observed in ABMC according to Tanner stage in boys. For rs2234693 (PvuII) and rs9340799 (XbaI) polymorphisms, differences in spinal ABMC in late puberty were 2-fold greater in girls who were homozygous for the C and G alleles, respectively (P = 0.001). For rs7757956, the difference in total body less head ABMC in late puberty was 50% less in individuals homozygous or heterozygous for the A allele (P = 0.006). Conclusions: Gains in ABMC in late pubertal girls are strongly associated with ESR1 polymorphisms, suggesting that estrogen contributes to this process via an estrogen receptor α-dependent pathway.
Resumo:
Ankylosing spondylitis (AS) is a common and highly familial rheumatic disorder. The sibling recurrence risk ratio for the disease is 63 and heritability assessed in twins > 90%. Although MHC genes, including HLA-B27, contribute only 20-50% of the genetic risk for the disease, no non-MHC gene has yet been convincingly demonstrated to influence either susceptibility to the disease or its phenotypic expression. Previous linkage and association studies have suggested the presence of a susceptibility gene for AS close to, or within, the cytochrome P450 2D6 gene (CYP2D6, debrisoquine hydroxylase) located at chromosome 22q13.1. We performed a linkage study of chromosome 22 in 200 families with AS affected sibling-pairs. Association of alleles of the CYP2D6 gene was examined by both case-control and within-family means. For case-control studies, 617 unrelated individuals with AS (361 probands from sibling-pair and parent-case trio families and 256 unrelated non-familial sporadic cases) and 402 healthy ethnically matched controls were employed. For within-family association studies, 361 families including 161 parent-case trios and 200 affected sibling-pair families were employed. Homozygosity for poor metabolizer alleles was found to be associated with AS. Heterozygosity for the most frequent poor metabolizer allele (CYP2D6*4) was not associated with increased susceptibility to AS. Significant within-family association of CYP2D6*4 alleles and AS was demonstrated. Weak linkage was also demonstrated between CYP2D6 and AS. We postulate that altered metabolism of a natural toxin or antigen by the CYP2D6 gene may increase susceptibility to AS.