953 resultados para NO2
Resumo:
We measured light absorption in 42 marine snow, sea ice, seawater, brine, and frost flower samples collected during the OASIS field campaign between February 27 and April 15, 2009. Samples represented multiple sites between landfast ice and open pack ice in coastal areas approximately 5 km west of Barrow, Alaska. The chromophores that are most commonly measured in snow, H2O2, NO3-, and NO2-, on average account for less than 1% of sunlight absorption in our samples. Instead, light absorption is dominated by unidentified "residual" species, likely organic compounds. Light absorption coefficients for the frost flowers on first-year sea ice are, on average, 40 times larger than values for terrestrial snow samples at Barrow, suggesting very large rates of photochemical reactions in frost flowers. For our marine samples the calculated rates of sunlight absorption and OH production from known chromophores are (0.1-1.4) x 10**14 (photons/cm**3/s) and (5-70) x 10**-12 (mol/L/s), respectively. Our residual spectra are similar to spectra of marine chromophoric dissolved organic matter (CDOM), suggesting that CDOM is the dominant chromophore in our samples. Based on our light absorption measurements we estimate dissolved organic carbon (DOC) concentrations in Barrow seawater and frost flowers as approximately 130 and 360 µM C, respectively. We expect that CDOM is a major source of OH in our marine samples, and it is likely to have other significant photochemistry as well.
Resumo:
Microbial dinitrogen (N2) fixation, the nitrogenase enzyme-catalysed reduction of N2 gas into biologically available ammonia, is the main source of new nitrogen (N) in the ocean. For more than 50 years, oceanic N2 fixation has mainly been attributed to the activity of the colonial cyanobacterium Trichodesmium. Other smaller N2-fixing microorganisms (diazotrophs)-in particular the unicellular cyanobacteria group A (UCYN-A)-are, however, abundant enough to potentially contribute significantly to N2 fixation in the surface waters of the oceans. Despite their abundance, the contribution of UCYN-A to oceanic N2 fixation has so far not been directly quantified. Here, we show that in one of the main areas of oceanic N2 fixation, the tropical North Atlantic7, the symbiotic cyanobacterium UCYN-A contributed to N2 fixation similarly to Trichodesmium. Two types of UCYN-A, UCYN-A1 and -A2, were observed to live in symbioses with specific eukaryotic algae. Single-cell analyses showed that both algae-UCYN-A symbioses actively fixed N2, contributing ~20% to N2 fixation in the tropical North Atlantic, revealing their significance in this region. These symbioses had growth rates five to ten times higher than Trichodesmium, implying a rapid transfer of UCYN-A-fixed N into the food web that might significantly raise their actual contribution to N2 fixation. Our analysis of global 16S rRNA gene databases showed that UCYN-A occurs in surface waters from the Arctic to the Antarctic Circle and thus probably contributes to N2 fixation in a much larger oceanic area than previously thought. Based on their high rates of N2 fixation and cosmopolitan distribution, we hypothesize that UCYN-A plays a major, but currently overlooked role in the oceanic N cycle.
Resumo:
Distributions of pore water O2, NO-2, NO-3, NH+4, Si(OH)4, PO[3-]4, Mn[2+], F-, and T.A. were determined at 15 stations in the eastern equatorial Atlantic. While overall profile characteristics are consistent with previous models of organic matter diagenesis, profile shapes suggest that a deep reaction layer, rich in organic C, is also present at many sites. While it is unlikely that the oxidation of organic C in this layer has had a major effect on the ocean C cycle, pore water profile shapes are significantly altered. Despite exposure to seawater SO[2-]4 concentrations for > 1000 years, decomposition of the organic matter in the layer appears to be restricted to oxic and suboxic processes. These results suggest major differences in organic carbon decomposition and preservation under oxic/suboxic and anoxic conditions. Present-day benthic fluxes are largest adjacent to the eastern boundary coastal upwelling region and similar in magnitude to values reported for the eastern Pacific. Preliminary estimates suggest that the benthic respiration in the eastern 1/3 of the North Atlantic south of 20°N may alone account for >20% of the total deep North Atlantic respiration. Combining these results with estimates of organic C burial and deep water-column decomposition suggests that this region is a major location of organic C input into the deep sea.
Resumo:
Nitrogen fixation, the biological reduction of dinitrogen gas (N2) to ammonium (NH4+), is quantitatively the most important external source of new nitrogen (N) to the open ocean. Classically, the ecological niche of oceanic N2 fixers (diazotrophs) is ascribed to tropical oligotrophic surface waters, often depleted in fixed N, with a diazotrophic community dominated by cyanobacteria. Although this applies for large areas of the ocean, biogeochemical models and phylogenetic studies suggest that the oceanic diazotrophic niche may be much broader than previously considered, resulting in major implications for the global N-budget. Here, we report on the composition, distribution and abundance of nifH, the functional gene marker for N2 fixation. Our results show the presence of eight clades of diazotrophs in the oxygen minimum zone (OMZ) off Peru. Although proteobacterial clades dominated overall, two clusters affiliated to spirochaeta and archaea were identified. N2 fixation was detected within OMZ waters and was stimulated by the addition of organic carbon sources supporting the view that non-phototrophic diazotrophs were actively fixing dinitrogen. The observed co-occurrence of key functional genes for N2 fixation, nitrification, anammox and denitrification suggests that a close spatial coupling of N-input and N-loss processes exists in the OMZ off Peru. The wide distribution of diazotrophs throughout the water column adds to the emerging view that the habitat of marine diazotrophs can be extended to low oxygen/high nitrate areas. Furthermore, our statistical analysis suggests that NO2- and PO43- are the major factors affecting diazotrophic distribution throughout the OMZ. In view of the predicted increase in ocean deoxygenation resulting from global warming, our findings indicate that the importance of OMZs as niches for N2 fixation may increase in the futur
Resumo:
Authigenic minerals can form in the water column and sediments of lakes, either abiotically or mediated by biological activity. Such minerals have been used as paleosalinity and paleoproductivity indicators and reflect trophic state and early diagenetic conditions. They are also considered potential indicators of past and perhaps ongoing microbial activity within sediments. Authigenic concretions, including vivianite, were described in late glacial sediments of Laguna Potrok Aike, a maar lake in southernmost Argentina. Occurrence of iron phosphate implies specific phosphorus sorption behavior and a reducing environment, with methane present. Because organic matter content in these sediments was generally low during glacial times, there must have been alternative sources of phosphorus and biogenic methane. Identifying these sources can help define past trophic state of the lake and diagenetic processes in the sediments. We used scanning electron microscopy, phosphorus speciation in bulk sediment, pore water analyses, in situ ATP measurements, microbial cell counts, and measurements of methane content and its carbon isotope composition (d13C CH4) to identify components of and processes in the sediment. The multiple approaches indicated that volcanic materials in the catchment are important suppliers of iron, sulfur and phosphorus. These elements influence primary productivity and play a role in microbial metabolism during early diagenesis. Authigenic processes led to the formation of pyrite framboids and revealed sulfate reduction. Anaerobic oxidation of methane and shifts in pore water ion concentration indicated microbial influence with depth. This study documents the presence of active microbes within the sediments and their relationship to changing environmental conditions. It also illustrates the substantial role played by microbes in the formation of Laguna Potrok Aike concretions. Thus, authigenic minerals can be used as biosignatures in these late Pleistocene maar sediments.
Resumo:
Ocean acidification is receiving increasing attention because of its potential to affect marine ecosystems. Rare CO2 vents offer a unique opportunity to investigate the response of benthic ecosystems to acidification. However, the benthic habitats investigated so far are mainly found at very shallow water (less than or equal to 5 m depth) and therefore are not representative of the broad range of continental shelf habitats. Here, we show that a decrease from pH 8.1 to 7.9 observed in a CO2 vent system at 40 m depth leads to a dramatic shift in highly diverse and structurally complex habitats. Forests of the kelp Laminaria rodriguezii usually found at larger depths (greater than 65 m) replace the otherwise dominant habitats (i.e. coralligenous outcrops and rhodolith beds), which are mainly characterized by calcifying organisms. Only the aragonite-calcifying algae are able to survive in acidified waters, while high-magnesium-calcite organisms are almost completely absent. Although a long-term survey of the venting area would be necessary to fully understand the effects of the variability of pH and other carbonate parameters over the structure and functioning of the investigated mesophotic habitats, our results suggest that in addition of significant changes at species level, moderate ocean acidification may entail major shifts in the distribution and dominance of key benthic ecosystems at regional scale, which could have broad ecological and socio-economic implications.
Resumo:
The Asian green mussel Perna viridis is tolerant to environmental stress, but its robustness varies between populations from habitats that differ in quality. So far, it is unclear whether local adaptations through stressinduced selection or phenotypic plasticity are responsible for these inter-population differences. We tested for the relevance of both mechanisms by comparing survival under hypoxia in mussels that were transplanted from an anthropogenically impacted (Jakarta Bay, Indonesia) to a natural habitat (Lada Bay, Indonesia) and vice versa. Mussels were retrieved 8 weeks after transplantation and exposed to hypoxia in the laboratory. Additional hypoxia tests were conducted with juvenile mussels collected directly from both sites. To elucidate possible relationships between habitat quality and mussel tolerance, we monitored concentrations of inorganic nutrients, temperature, dissolved oxygen, salinity, phytoplankton density and the mussels' body condition index (BCI) for 20 months before, during and after the experiments. Survival under hypoxia depended mainly on the quality of the habitat where the mussels lived before the hypoxia tests and only to a small degree on their site of origin. Furthermore, stress tolerance was only higher in Jakarta than in Lada Bay mussels when the BCIs were substantially higher, which in turn correlated with the phytoplankton densities. We explain why phenotypic plasticity and high BCIs are more likely the causes of populationspecific differences in hypoxia tolerance in P. viridis than stress-induced selection for robust genotypes. This is relevant to understanding the role of P. viridis as mariculture organism in eutrophic ecosystems and invasive species in the (sub)tropical world.
Resumo:
This data report includes the analytical results of about 220 water wamples collected at 33 stations in the Fjords of Kiel ,...
Resumo:
In oceans, estuaries, and rivers, nitrification is an important nitrate source, and stable isotopes of nitrate are often used to investigate recycling processes (e.g. remineralisation, nitrification) in the water column. Nitrification is a two-step process, where ammonia is oxidised via nitrite to nitrate. Nitrite usually does not accumulate in natural environments, which makes it difficult to study the single isotope effect of ammonia oxidation or nitrite oxidation in natural systems. However, during an exceptional flood in the Elbe River in June 2013, we found a unique co-occurrence of ammonium, nitrite, and nitrate in the water column, returning towards normal summer conditions within 1 week. Over the course of the flood, we analysed the evolution of d15N-[NH4]+ and d15N-[NO2]- in the Elbe River. In concert with changes in suspended particulate matter (SPM) and d15N SPM, as well as nitrate concentration, d15N-NO3 - and d18O-[NO3] -, we calculated apparent isotope effects during net nitrite and nitrate consumption. During the flood event, > 97 % of total reactive nitrogen was nitrate, which was leached from the catchment area and appeared to be subject to assimilation. Ammonium and nitrite concentrations increased to 3.4 and 4.4 µmol/l, respectively, likely due to remineralisation, nitrification, and denitrification in the water column. d15N-[NH4]+ values increased up to 12 per mil, and d15N-[NO2]- ranged from -8.0 to -14.2 per mil. Based on this, we calculated an apparent isotope effect 15-epsilon of -10.0 ± 0.1 per mil during net nitrite consumption, as well as an isotope effect 15-epsilon of -4.0 ± 0.1 per mil and 18-epsilon of -5.3 ± 0.1 per mil during net nitrate consumption. On the basis of the observed nitrite isotope changes, we evaluated different nitrite uptake processes in a simple box model. We found that a regime of combined riparian denitrification and 22 to 36 % nitrification fits best with measured data for the nitrite concentration decrease and isotope increase.
Resumo:
To understand how ocean acidification (OA) influences sediment microbial communities, naturally CO2-rich sites are increasingly being used as OA analogues. However, the characterization of these naturally CO2-rich sites is often limited to OA-related variables, neglecting additional environmental variables that may confound OA effects. Here, we used an extensive array of sediment and bottom water parameters to evaluate pH effects on sediment microbial communities at hydrothermal CO2 seeps in Papua New Guinea. The geochemical composition of the sediment pore water showed variations in the hydrothermal signature at seep sites with comparable pH, allowing the identification of sites that may better represent future OA scenarios. At these sites, we detected a 60% shift in the microbial community composition compared with reference sites, mostly related to increases in Chloroflexi sequences. pH was among the factors significantly, yet not mainly, explaining changes in microbial community composition. pH variation may therefore often not be the primary cause of microbial changes when sampling is done along complex environmental gradients. Thus, we recommend an ecosystem approach when assessing OA effects on sediment microbial communities under natural conditions. This will enable a more reliable quantification of OA effects via a reduction of potential confounding effects. This pangaea entry contains the data on the microbial community structure and bottom water parameters.
Resumo:
In this paper we investigated, for two years and with a bi-monthly frequency, how physical, chemical, and biological processes affect the marine carbonate system in a coastal area characterized by high alkalinity riverine discharge (Gulf of Trieste, northern Adriatic Sea, Mediterranean Sea).
Resumo:
The photochemistry of the polar regions of Earth, as well as the interstellar medium, is driven by the effect of ultraviolet radiation on ice surfaces and on the materials trapped within them. While the area of ice photochemistry is vast and much research has been completed, it has only recently been possible to study the dynamics of these processes on a microscopic level. One of the leading techniques for studying photoreaction dynamics is Velocity Map Imaging (VMI). This technique has been used extensively to study several types of reaction dynamics processes. Although the majority of these studies have utilized molecular beams as the main medium for reactants, new studies showed the versatility of the technique when applied to molecular dynamics of molecules adsorbed on metal surfaces. Herein the development of a velocity map imaging apparatus capable of studying the photochemistry of condensed phase materials is described. The apparatus is used to study of the photo-reactivity of NO2 condensed within argon matrices to illustrate its capabilities. A doped ice surface is formed by condensing Ar and NO2 gas onto a sapphire rod which is cooled using a helium compressor to 20 K. The matrix is irradiated using an Nd:YAG laser at 355 nm, and the resulting NO fragment is state-selectively ionized using an excimer-pumped dye laser. In all, we are able to detect transient photochemically generated species and can collect information on their quantum state and kinetic energy distribution. It is found that the REMPI spectra changes as different sections of the dissociating cloud are probed. The rotational and translational energy populations are found to be bimodal with a low temperature component roughly at the temperature of the matrix, and a second component with much higher temperature, the rotational temperature showing a possible population inversion, and the translational temperature of 100-200 K. The low temperature translational component is found to dominate at long delay times between dissociation and ionization, while at short time delays the high temperature component plays a larger role. The velocity map imaging technique allows for the detection of both the axial and radial components of the translational energy. The distribution of excess energy over the rotational, electronic and translational states of the NO photofragments provides evidence for collisional quenching of the fragments in the Ar-matrix prior to their desorption.
Resumo:
Underground hardrock mining can be very energy intensive and in large part this can be attributed to the power consumption of underground ventilation systems. In general, the power consumed by a mine’s ventilation system and its overall scale are closely related to the amount of diesel power in operation. This is because diesel exhaust is a major source of underground air pollution, including diesel particulate matter (DPM), NO2 and heat, and because regulations tie air volumes to diesel engines. Furthermore, assuming the size of airways remains constant, the power consumption of the main system increases exponentially with the volume of air supplied to the mine. Therefore large diesel fleets lead to increased energy consumption and can also necessitate large capital expenditures on ventilation infrastructure in order to manage power requirements. Meeting ventilation requirements for equipment in a heading can result in a similar scenario with the biggest pieces leading to higher energy consumption and potentially necessitating larger ventilation tubing and taller drifts. Depending on the climate where the mine is located, large volumes of air can have a third impact on ventilation costs if heating or cooling the air is necessary. Annual heating and cooling costs, as well as the cost of the associated infrastructure, are directly related to the volume of air sent underground. This thesis considers electric mining equipment as a means for reducing the intensity and cost of energy consumption at underground, hardrock mines. Potentially, electric equipment could greatly reduce the volume of air needed to ventilate an entire mine as well as individual headings because they do not emit many of the contaminants found in diesel exhaust and because regulations do not connect air volumes to electric motors. Because of the exponential relationship between power consumption and air volumes, this could greatly reduce the amount of power required for mine ventilation as well as the capital cost of ventilation infrastructure. As heating and cooling costs are also directly linked to air volumes, the cost and energy intensity of heating and cooling the air would also be significantly reduced. A further incentive is that powering equipment from the grid is substantially cheaper than fuelling them with diesel and can also produce far fewer GHGs. Therefore, by eliminating diesel from the underground workers will enjoy safer working conditions and operators and society at large will gain from a smaller impact on the environment. Despite their significant potential, in order to produce a credible economic assessment of electric mining equipment their impact on underground systems must be understood and considered in their evaluation. Accordingly, a good deal of this thesis reviews technical considerations related to the use of electric mining equipment, especially ones that impact the economics of their implementation. The goal of this thesis will then be to present the economic potential of implementing the equipment, as well as to outline the key inputs which are necessary to support an evaluation and to provide a model and an approach which can be used by others if the relevant information is available and acceptable assumptions can be made.
Resumo:
Die zunehmende Luftverschmutzung aufgrund des steigenden Energiebedarfs und Mobilitätsanspruchs der Bevölkerung, insbesondere in urbanen Gebieten, erhöht das Gefährdungspotential für die Gesundheit und verschlechtert so die Lebensqualität. Neben der Vermeidung von Emissionen toxischer Gase als mittel- und langfristig optimale Maßnahme zur Verbesserung der Luftqualität, stellt der Abbau emittierter Luftschadstoffe ein geeignetes und kurzfristig wirksames Mittel dar. Ein solcher Abbau kann durch Photokatalyse erzielt werden, allerdings nutzen Photokatalysatoren, die auf dem Halbleiter Titandioxid (TiO2) basieren, das solare Emissionsspektrum nur geringfüfig aus und sind in Innenräumen und anderen UV-schwachen Bereichen nicht wirksam. Um diese Nachteile zu überwinden, wurde ein Photokatalysator entwickelt und hergestellt, der aus TiO2 (P25) als UV-aktiver Photokatalysator und als Trägermaterial sowie einem seinerseits im Vis-Bereich photoaktiven Porphyrazin-Farbstoff als Beschichtung besteht. Die sterisch anspruchsvollen und in der Peripherie mit acht Bindungsmotiven für TiO2 versehenen Farbstoffmoleküle wurden zu diesem Zweck auf der Halbleiteroberfläche immobilisiert. Die so gebildeten Porphyrazin-Titandioxid-Hybride wurde ausführlich charakterisiert. Dabei wurden unter anderem die Bindung der Farbstoffe auf der Titandioxidoberfläche mittels Adsorptionsisothermen und die UV/Vis-spektroskopischen Eigenschaften des Hybridmaterials untersucht. Zur Bestimmung der photokatalytischen Aktivitäten der Einzelkomponenten und des Hybridmaterials wurden diese auf die Fähigkeit zur Bildung von Singulett-Sauerstoff, Wasserstoffperoxid und Hydroxylradikalen hin sowie in einem an die ISO-22197-1 angelehnten Verfahren auf die Fähigkeit zum Abbau von NO hin jeweils bei Bestrahlung in drei Wellenlängenbereichen (UV-Strahlung, blaues Licht und rotes Licht) geprüft. Darüber hinaus konnte die Aktivität des Hybridmaterials bei der Photodynamischen Inaktivierung (PDI) von Bakterien unter UV- und Rotlichtbestrahlung im Vergleich zum reinen Ttandioxid bestimmt werden. Die Charakterisierung des Hybridmaterials ergab, dass die Farbstoffmoleküle in einer neutralen Suspension nahezu irreversibel in einer monomolekularen Schicht mit einer Bindungsenergie von -41.43 kJ/mol an die Oberfläche gebunden sind und das Hybridmaterial mit hohen Extinktionskoeffizienten von bis zu 105 M-1cm-1 in großen Bereichen des UV/Vis-Spektrums Photonen absorbiert. Das Spektrum des Hybridmaterials setzt sich dabei additiv aus den beiden Einzelspektren zusammen. Die Auswirkungen der Charakterisierungsergebnisse auf die Bildung reaktiver Sauerstoffspezies wurden ausführlich diskutiert. Der Vergleich der Aktivitäten in Bezug auf die Bildung der reaktiven Sauerstoffspezies zeigte, dass die Aktivität des Hybridmaterials bis auf die bei der Bildung von Hydroxylradikalen unter UV-Bestrahlung in allen Versuchen deutlich höher war als die Aktivität des reinen Titandioxids. Im Gegensatz zu reinem Titandioxid erzeugte das Hybridmaterial in allen untersuchten Wellenlängenbereichen Mengen an Singulett-Sauerstoff, die photophysikalisch eindeutig detektierbar waren. Zur Erklärung und Deutung dieser Beobachtungen wurde eine differenzierte Diskussion geführt, die die Ergebnisse der Hybridpartikelcharakterisierung aufgreift und implementiert. Der Vergleich der NO-Abbaueffizienzen ergab bei allen Experimenten durchgängig deutlich höhere Werte für das Hybridmaterial. Zudem wurden durch das Hybridmaterial nachgewiesenermaßen wesentlich geringere Mengen des unerwünschten Nebenprodukts des Abbaus (NO2) gebildet. Im Zuge der Diskussion wurden verschiedene mögliche Mechanismen der „sauberen“ Oxidation zu Nitrat durch das Hybridmaterial vorgestellt. Untersuchungen zur Photodynamischen Inaktivierung verschiedener Bakterien ergaben, dass das Hybridmaterial neben einer zu P25 ähnlichen Aktivität unter UV-Bestrahlung, anders als P25, auch eine PDI verschiedener Bakterien unter Rotlichtbestrahlung erreicht.