964 resultados para NEUTRON ABSORBERS
Resumo:
We provide a microscopic calculation of neutron-proton and proton-proton cross sections in symmetric nuclear matter at various densities, using the Brueckner-Hartee-Fock approximation scheme with the Argonne V-14 potential including the contribution of microscopic three-body force. We investigate separately the effects of three-body force on the effective mass and on the scattering amplitude. In the present calculation, the rearrangement contribution of three-body force is considered, which will reduce the neutron and proton effective mass, and depress the amplitude of cross section. The effect of three body force is shown to be repulsive, especially in high densities and large momenta, which will suppress the cross section markedly.
Resumo:
We study the relationship between the properties of the isovector giant dipole resonance of finite nuclei and the symmetry energy in the framework of the relativistic mean field theory with six different parameter sets of nonlinear effective Lagrangian. A strong linear correlation of excited energies of the dipole resonance in finite nuclei and symmetry energy at and below the saturation density is found. This linear correlation leads to the symmetry energy at the saturation density at the interval 33.0MeV <= S(po) <= 37.0 MeV. The comparison to the present experimental data in the soft dipole mode of (132) Sn constrains approximately the symmetry energy at p = 0.1 fm(-3) at the interval 21.2MeV similar to 22.5 MeV. It is proposed that a precise measurement of the soft dipole mode in neutron rich nuclei could set up an important constraint on the equation of state for asymmetric nuclear matter.
Resumo:
A standard in-beam gamma-spectroscopy experiment for Pt-188 is performed via the Yb-176(O-18, 6n) reaction at beam energies of 88 and 95 MeV, and the level scheme for (188) Pt is established. Prolate and oblate shape coexistence has been demonstrated to occur in Pt-188 by applying the projected shell model. The rotation alignment of i(13/2) neutrons drives the yrast sequence changing suddenly from prolate to oblate shape at angular momentum 10th, indicating likely a new type of shape phase transition along the yrast line in Pt-188.
Resumo:
The beta-delayed neutron and gamma energy spectra taken from the decay of neutron-rich nucleus N-21 were measured by using the beta - gamma and beta - n coincidence detection method. Thirteen new neutron groups ranging from 0.28MeV to 4.98 MeV and with a total branching ratio of 88.7 +/- 4.2% were observed and presented. One gamma transition with an energy of 1222 keV emitted from the excited state of O-21, and four gamma transitions with energies of 1674, 2397, 2780, and 3175 keV emitted from the excited states of O-20 were identified in the 3 decay chain of N-21. The beta decay half-life for N-21 is determined to be 82.9 +/- 1.9 ms. The uncertainty of half-life is much smaller than the previous result.
Resumo:
Within the hadronic transport model IBUU04, we investigate the effect of density-dependent symmetry energy on double neutron/proton (n/p) ratio of free nucleons in heavy ion collisions by taking four isotopic Sn+Sn reaction systems. Especially the entrance-channel asymmetry and impact-parameter dependence of the effect of symmetry energy are discussed. It is found that in both central and semi-central collisions the sensitivity of the double n/p ratio to the density-dependent symmetry energy is more pronounced in neutron-richer systems. Our results also indicate clearly that the effect of symmetry energy is stronger in central collisions than that in semi-central collisions.
Resumo:
We perform a systematic calculation of the equation of state of asymmetric nuclear matter at finite temperature within the framework of the Brueckner-Hartree-Fock approach with a microscopic three-body force. When applying it to the study of hotka on condensed matter, we find that the thermal effect is more profound in comparison with normal matter, in particular around the threshold density. Also, the increase of temperature makes the equation of state slightly stiffer through suppression of kaon condensation.
Resumo:
The shell correction is proposed in the improved isospin dependent quantum molecular dynamics (Im-IQMD) model, which plays an important role in heavy-ion fusion reactions near Coulomb barrier. By using the ImIQMD model, the static and dynamical fusion barriers, dynamical barrier distribution in the fusion reactions are analyzed systematically. The fusion and capture excitation functions for a series of reaction systems are calculated and compared with experimental data. It is found that the fusion cross sections for neutron-rich systems increase obviously, and the strong shell effects of two colliding nuclei result in a decrease of the fusion cross sections at the sub-barrier energies. The lowering of the dynamical fusion barriers favors the enhancement of the sub-barrier fusion cross sections, which is related to the nucleon transfer and the neck formation in the fusion reactions.
Resumo:
We construct microscopic three-nucleon forces consistent with the Bonn and Nijmegen two-nucleon potentials, and including , Roper, and nucleon-antinucleon excitations. Recent results for the choice of the meson parameters are discussed. The forces are used in Brueckner calculations and the saturation properties of nuclear matter are determined.
Resumo:
在兰州重离子加速器国家实验室(HIRFL)放射性次级束流线(RIBLL)上,用束流透射法测量了丰中子奇异核17B与C靶反应的总截面.假定17B具有15B(核芯)+2n结构,采用Gauss+HO形式的密度分布和零力程Glauber模型进行计算的结果可以很好地拟合实验数据,并得出17B的密度分布有一个很大的弥散,表明17B是双中子晕核.
Resumo:
The reaction cross section of B-17 on C-12 target at (43.7 +/- 2.4) MeV/u has been measured at the Radioactive Ion Beam Line in Lanzhou (RIBLL). The root-mean-square matter radius (R-rms) was deduced to be (2.92 +/- 0.10) fm, while the R-rms of the core and the valence neutron distribution are 2.28 fm and 5.98 fm respectively. Assuming a "core plus 2n" structure in B-17, the mixed configuration of (2s(1/2)) and (1d(5/2)) of the valence neutrons is studied and the s-wave spectroscopic factor is found to be (80 +/- 21)%.
Resumo:
Using the isospin- and momentum-dependent hadronic transport model 1BUU04, we have investigated the influence of the entrance-channel isospin asymmetry on the sensitivity of the pre-equilibrium neutron/proton ratio to symmetry energy in central heavy-ion collisions induced by high-energy radioactive beams. Our analysis and discussion are based on the dynamical simulations of the three isotopic reaction Systems Sn-132+Sn-124, Sn-124+Sn-112 and Sn-112+(112)Su which are of the same total proton number but, different isospin asymmetry. We find that, the kinetic-energy distributions of the pre-equilibrium neutron/proton ratio are quite sensitive to the density-dependence of symmetry energy at incident beam energy E/A = 400 MeV, and the sensitivity increases as the isospin asymmetry of the reaction system increases.
Resumo:
A thick natural uranium target was bombarded with a 60 MeV/u O-18 beam. The neutron-rich isotope Ra-230 as the target residue was produced through the multinucleon transfer reaction (U-238-4p-4n). The barium and radium fraction as BaCl2 precipitate were radiochemically separated first from the mixture of uranium and reaction products. Then, the radium fraction was separated from BaCl2 precipitate by using cation exchange technique. The gamma-ray spectra of the Ra fraction were measured using an HPGe detector. The production cross sections of Ra-230 were obtained by a combination of the radiochemical separation technique and off-line gamma-ray spectroscopy. The cross section of Ra-230 has been determined to be 66 +/- 20 mu b.
Resumo:
We have developed the formula and the numerical code for calculating the rearrangement contribution to the single particle (s.p.) properties in asymmetric nuclear matter induced by three-body forces within the framework of the Brueckner theory extended to include a microscopic three-body force (TBF). We have investigated systematically the TBF-induced rearrangement effect on the s.p. properties and their isospin-behavior in neutron-rich nuclear medium. It is shown that the TBF induces a repulsive rearrangement contribution to the s.p. potential in nuclear medium. The repulsion of the TBF rearrangement contribution increases rapidly as a function of density and nucleon momentum. It reduces largely the attraction of the BHF s.p. potential and enhances strongly the momentum dependence of the s.p. potential at large densities and high-momenta. The TBF rearrangement effect on symmetry potential is to enhances its repulsion (attraction) on neutrons (protons) in dense asymmetric nuclear matter.
Resumo:
The dinuclear model of the formation mechanism of a superheavy compound nucleus assumes that when all nucleons of the projectile have been transferred in to the target nucleus the compound nucleus is formed. The nucleon transfer is determined by the driving potential. For some reaction channels, the relation between nucleon transfer and the evolution path of the neutron/proton ratio is rather complicated. In principle, both the dynamical equation and the driving potential should be a twodimensional explicit function of the neutron and proton. For the sake of simplicity we calculated the driving potential by choosing the path of the nucleon transfer which is related to the nutron/proton ratio, and the calculated evaporation residue cross-sections to synthesize the superheavy nuclei are much closer to the experimental data
Resumo:
We investigate the dependences of the potential energy surfaces (PES) and the fusion probabilities for some cold fusion reactions leading to super-heavy elements on the nuclear shell effect and pairing energy. It is found that the shell effect plays an important role in the fusion of the super-heavy element while pairing energy's contribution is insignificant. The fusion probabilities and evaporation residue cross sections as functions of the Ge-isotope projectile bombarding Pb-208 are also investigated. It is found that evaporation residue cross sections do not always increase with the increasing neutron number of Ge-isotope