939 resultados para NEAR-FIELD OPTICS
Resumo:
This dissertation is concerned with the control, combining, and propagation of laser beams through a turbulent atmosphere. In the first part we consider adaptive optics: the process of controlling the beam based on information of the current state of the turbulence. If the target is cooperative and provides a coherent return beam, the phase measured near the beam transmitter and adaptive optics can, in principle, correct these fluctuations. However, for many applications, the target is uncooperative. In this case, we show that an incoherent return from the target can be used instead. Using the principle of reciprocity, we derive a novel relation between the field at the target and the scattered field at a detector. We then demonstrate through simulation that an adaptive optics system can utilize this relation to focus a beam through atmospheric turbulence onto a rough surface. In the second part we consider beam combining. To achieve the power levels needed for directed energy applications it is necessary to combine a large number of lasers into a single beam. The large linewidths inherent in high-power fiber and slab lasers cause random phase and intensity fluctuations occurring on sub-nanosecond time scales. We demonstrate that this presents a challenging problem when attempting to phase-lock high-power lasers. Furthermore, we show that even if instruments are developed that can precisely control the phase of high-power lasers; coherent combining is problematic for DE applications. The dephasing effects of atmospheric turbulence typically encountered in DE applications will degrade the coherent properties of the beam before it reaches the target. Finally, we investigate the propagation of Bessel and Airy beams through atmospheric turbulence. It has been proposed that these quasi-non-diffracting beams could be resistant to the effects of atmospheric turbulence. However, we find that atmospheric turbulence disrupts the quasi-non-diffracting nature of Bessel and Airy beams when the transverse coherence length nears the initial aperture diameter or diagonal respectively. The turbulence induced transverse phase distortion limits the effectiveness of Bessel and Airy beams for applications requiring propagation over long distances in the turbulent atmosphere.
Resumo:
Deposition of indium tin oxide (ITO) among various transparent conductive materials on flexible organic substrates has been intensively investigated among academics and industrials for a whole new array of imaginative optoelectronic products. One critical challenge coming with the organic materials is their poor thermal endurances, considering that the process currently used to produce industry-standard ITO usually involves relatively high substrate temperature in excess of 200°C and post-annealing. A lower processing temperature is thus demanded, among other desires of high deposition rate, large substrate area, good uniformity, and high quality of the deposited materials. For this purpose, we developed an RF-assisted closed-field dual magnetron sputtering system. The “prototype” system consists of a 3-inch unbalanced dual magnetron operated at a closed-field configuration. An RF coil was fabricated and placed between the two magnetron cathodes to initiate a secondary plasma. The concept is to increase the ionization faction with the RF enhancement and utilize the ion energy instead of thermal energy to facilitate the ITO film growth. The closed-field unbalanced magnetrons create a plasma in the intervening region rather than confine it near the target, thus achieving a large-area processing capability. An RF-compensated Langmuir probe was used to characterize and compare the plasmas in mirrored balanced and closed-field unbalanced magnetron configurations. The spatial distributions of the electron density ne and electron temperature Te were measured. The density profiles reflect the shapes of the plasma. Rather than intensively concentrated to the targets/cathodes in the balanced magnetrons, the plasma is more dispersive in the closed-field mode with a twice higher electron density in the substrate region. The RF assistance significantly enhances ne by one or two orders of magnitude higher. The effect of various other parameters, such as pressure, on the plasma was also studied. The ionization fractions of the sputtered atoms were measured using a gridded energy analyzer (GEA) combined with a quartz crystal microbalance (QCM). The presence of the RF plasma effectively increases the ITO ionization fraction to around 80% in both the balanced and closed-field unbalanced configurations. The ionization fraction also varies with pressure, maximizing at 5-10 mTorr. The study of the ionization not only facilitates understanding the plasma behaviors in the RF-assisted magnetron sputtering, but also provides a criterion for optimizing the film deposition process. ITO films were deposited on both glass and plastic (PET) substrates in the 3-inch RF-assisted closed-field magnetrons. The electrical resistivity and optical transmission transparency of the ITO films were measured. Appropriate RF assistance was shown to dramatically reduce the electrical resistivity. An ITO film with a resistivity of 1.2×10-3 Ω-cm and a visible light transmittance of 91% was obtained with a 225 W RF enhancement, while the substrate temperature was monitored as below 110°C. X-ray photoelectron spectroscopy (XPS) was employed to confirm the ITO film stoichiometry. The surface morphology of the ITO films and its effect on the film properties were studied using atomic force microscopy (AFM). The prototype of RF-assisted closed-field magnetron was further extended to a larger rectangular shaped dual magnetron in a flat panel display manufacturing system. Similar improvement of the ITO film conductivities by the auxiliary RF was observed on the large-area PET substrates. Meanwhile, significant deposition rates of 25-42 nm/min were achieved.
Resumo:
We present a high resolution spectrometer consisting of dual solid Fabry-Perot Interferometers (FPIs). This work is intended to be an all inclusive documentation of the instrument including discussion of the design of this instrument, the methods used in data reduction, and the analysis of these data. Each FPI is made of a single piece of L-BBH2 glass which has a high index of refraction n~2.07 with a thickness on the order of 100 μm. Each is then coated with partially reflective mirrors to create a resonant cavity and thus achieve a spectral resolution of R~30,000. Running the FPIs in tandem reduces the overlapping orders and allows for a much wider free spectral range and higher contrast. We will also discuss the properties of the FPIs which we have measured. This includes the tuning of the FPIs which is achieved by adjusting the temperature and thus changing the FPI gap and the refractive index of the material. The spectrometer then moves spatially in order to get spectral information at every point in the field of view. We select spectral lines for further analysis and create maps of the line depths across the field. Using this technique we are able to measure the fluorescence of chlorophyll in plants and attempt to observe zodiacal light. In the chlorophyll analysis we are able to detect chlorophyll fluorescence using the line depth in a plant using the sky as a reference solar spectrum. This instrument has possible applications in either a cubesat or aerial observations to measure bulk plant activity over large areas.
Resumo:
One of the most exciting discoveries in astrophysics of the last last decade is of the sheer diversity of planetary systems. These include "hot Jupiters", giant planets so close to their host stars that they orbit once every few days; "Super-Earths", planets with sizes intermediate to those of Earth and Neptune, of which no analogs exist in our own solar system; multi-planet systems with planets smaller than Mars to larger than Jupiter; planets orbiting binary stars; free-floating planets flying through the emptiness of space without any star; even planets orbiting pulsars. Despite these remarkable discoveries, the field is still young, and there are many areas about which precious little is known. In particular, we don't know the planets orbiting Sun-like stars nearest to our own solar system, and we know very little about the compositions of extrasolar planets. This thesis provides developments in those directions, through two instrumentation projects.
The first chapter of this thesis concerns detecting planets in the Solar neighborhood using precision stellar radial velocities, also known as the Doppler technique. We present an analysis determining the most efficient way to detect planets considering factors such as spectral type, wavelengths of observation, spectrograph resolution, observing time, and instrumental sensitivity. We show that G and K dwarfs observed at 400-600 nm are the best targets for surveys complete down to a given planet mass and out to a specified orbital period. Overall we find that M dwarfs observed at 700-800 nm are the best targets for habitable-zone planets, particularly when including the effects of systematic noise floors caused by instrumental imperfections. Somewhat surprisingly, we demonstrate that a modestly sized observatory, with a dedicated observing program, is up to the task of discovering such planets.
We present just such an observatory in the second chapter, called the "MINiature Exoplanet Radial Velocity Array," or MINERVA. We describe the design, which uses a novel multi-aperture approach to increase stability and performance through lower system etendue, as well as keeping costs and time to deployment down. We present calculations of the expected planet yield, and data showing the system performance from our testing and development of the system at Caltech's campus. We also present the motivation, design, and performance of a fiber coupling system for the array, critical for efficiently and reliably bringing light from the telescopes to the spectrograph. We finish by presenting the current status of MINERVA, operational at Mt. Hopkins observatory in Arizona.
The second part of this thesis concerns a very different method of planet detection, direct imaging, which involves discovery and characterization of planets by collecting and analyzing their light. Directly analyzing planetary light is the most promising way to study their atmospheres, formation histories, and compositions. Direct imaging is extremely challenging, as it requires a high performance adaptive optics system to unblur the point-spread function of the parent star through the atmosphere, a coronagraph to suppress stellar diffraction, and image post-processing to remove non-common path "speckle" aberrations that can overwhelm any planetary companions.
To this end, we present the "Stellar Double Coronagraph," or SDC, a flexible coronagraphic platform for use with the 200" Hale telescope. It has two focal and pupil planes, allowing for a number of different observing modes, including multiple vortex phase masks in series for improved contrast and inner working angle behind the obscured aperture of the telescope. We present the motivation, design, performance, and data reduction pipeline of the instrument. In the following chapter, we present some early science results, including the first image of a companion to the star delta Andromeda, which had been previously hypothesized but never seen.
A further chapter presents a wavefront control code developed for the instrument, using the technique of "speckle nulling," which can remove optical aberrations from the system using the deformable mirror of the adaptive optics system. This code allows for improved contrast and inner working angles, and was written in a modular style so as to be portable to other high contrast imaging platforms. We present its performance on optical, near-infrared, and thermal infrared instruments on the Palomar and Keck telescopes, showing how it can improve contrasts by a factor of a few in less than ten iterations.
One of the large challenges in direct imaging is sensing and correcting the electric field in the focal plane to remove scattered light that can be much brighter than any planets. In the last chapter, we present a new method of focal-plane wavefront sensing, combining a coronagraph with a simple phase-shifting interferometer. We present its design and implementation on the Stellar Double Coronagraph, demonstrating its ability to create regions of high contrast by measuring and correcting for optical aberrations in the focal plane. Finally, we derive how it is possible to use the same hardware to distinguish companions from speckle errors using the principles of optical coherence. We present results observing the brown dwarf HD 49197b, demonstrating the ability to detect it despite it being buried in the speckle noise floor. We believe this is the first detection of a substellar companion using the coherence properties of light.
Resumo:
Silver Bow Creek (SBC) flows into the Warm Springs Ponds Operable Unit (WSPOU), where various containment cells are used to precipitate copper and other metals (e.g., Cd, Cu, Mn, Pb, Zn). Lime is added seasonally to increase the pH and assist in removal of metals from the water column. Although the WSPOU is effective at removing copper and other cationic trace metals, concentrations of dissolved arsenic exiting the facility are often above the site specific standard, 20 20 ug/L, during low-flow periods each summer and fall. This thesis is a continuation of arsenic geochemistry studies by Montana Tech in the WSPOU. Field work focused on Pond 3, the largest and first in the series of treatment ponds. Shallow groundwater was sampled from 8 PVC piezometers located near the south end of Pond 3. Three sediment pore-water diffusion samplers (“peepers”) were also deployed at the south end of Pond 3 to examine vertical gradients in chemistry in the top 25 cm of the pond sediment. In general, the pH and Eh values of the shallow groundwater and sediment pore-water were less than in the pond water. Concentrations of arsenic were generally higher in subsurface water, and tended to pass through a maximum (up to 530 g/L) about 10 cm below the sediment-water interface. In the peeper cells, there was a strong positive correlation between dissolved As and dissolved Fe, and an inverse correlation with sulfate. Therefore, the zone of arsenic release corresponds to a zone of bacterial Fe and sulfate reduction in the shallow, organic-rich sediment. Redox speciation of arsenic shows that arsenate (As(V)) is dominant in the pond, and arsenite (As(III)) is dominant in the subsurface water. A series of laboratory experiments with pH adjustment were completed using SBC water collected near the inlet to the WSPOU as well as water and shallow sediment collected from Pond 3. Water ± sediment mesocosms were set up in 1-L Nalgene bottles (closed system) or a 20-L aquarium (open system), both with continuous stirring. The pH of the mesocosm was adjusted by addition of NaOH or HNO3 acid. The closed system provided better pH control since the water was not in contact with the atmosphere, which prevented exchange of carbon dioxide. In both the closed and open systems, dissolved arsenic concentrations either decreased or stayed roughly the same with increase in pH to values > 11. Therefore, the release of dissolved As into the treatment ponds in low-flow periods is not due to changes in pH alone. All of these results support the hypothesis that the arsenic release in WSPOU is linked to microbial reduction of ferric oxide minerals in the organic-rich sediment. Upwards diffusion of dissolved As from the sediment pore-water into the pond water is the most likely explanation for the increase in As concentration of the WSPOU in low-flow periods.
Resumo:
Environmental samples were collected at three surface water sites between 5/21/2011 and 11/21/2014 along the Upper Boulder River near Boulder Montana. The sites were located at Bernice (within the mountain block), near the High Ore drainage (near the mountain block/basin transition), and at the USGS Gauging Station near Boulder, Montana (within the basin). The parameters measured in the field were SC, temperature, and alkalinity with occasional pH measurements. We collected samples for anions, cations, and stable isotopes in the catchment. We identified endmembers by sampling snow and groundwater and determined from available data an approximate endmember for rain, snow, and groundwater. We used temporal and spatial variations of water chemistry and isotopes to generate an endmember mixing model. Groundwater was found to always be an important contributor to river flow and could increase by nearly an order of magnitude during large snowmelt events. This resulted in groundwater comprising ~20% of total river flow during snowmelt at all sites. At peak snowmelt we observed that near surface water contributions to the river were from a mixture of rain and snow. Soil water, though not sampled, was hypothesized to be an important part of the hydrologic story. If so, the endmember contributions determined in this study may be different. Groundwater may have the highest variation depending on water chemistry of shallow soil water.
Resumo:
Near infrared spectroscopy (NIRS) is an emerging non-invasive optical neuro imaging technique that monitors the hemodynamic response to brain activation with ms-scale temporal resolution and sub-cm spatial resolution. The overall goal of my dissertation was to develop and apply NIRS towards investigation of neurological response to language, joint attention and planning and execution of motor skills in healthy adults. Language studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal and fronto-temporal cortex of healthy adults in response to language reception and expression. The mathematical model developed based on granger causality explicated the directional flow of information during the processing of language stimuli by the fronto-temporal cortex. Joint attention and planning/ execution of motor skill studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal cortex of healthy adults and in children (5-8 years old) with autism (for joint attention studies) and individuals with cerebral palsy (for planning/execution of motor skills studies). The joint attention studies on healthy adults showed differences in activation as well as intensity and phase dependent connectivity in the frontal cortex during joint attention in comparison to rest. The joint attention studies on typically developing children showed differences in frontal cortical activation in comparison to that in children with autism. The planning and execution of motor skills studies on healthy adults and individuals with cerebral palsy (CP) showed difference in the frontal cortical dominance, that is, bilateral and ipsilateral dominance, respectively. The planning and execution of motor skills studies also demonstrated the plastic and learning behavior of brain wherein correlation was found between the relative change in total hemoglobin in the frontal cortex and the kinematics of the activity performed by the participants. Thus, during my dissertation the NIRS neuroimaging technique was successfully implemented to investigate the neurological response of language, joint attention and planning and execution of motor skills in healthy adults as well as preliminarily on children with autism and individuals with cerebral palsy. These NIRS studies have long-term potential for the design of early stage interventions in children with autism and customized rehabilitation in individuals with cerebral palsy.
Resumo:
It has been recently shown that the double exchange Hamiltonian, with weak antiferromagnetic interactions, has a richer variety of first- and second-order transitions than previously anticipated, and that such transitions are consistent with the magnetic properties of manganites. Here we present a thorough discussion of the variational mean-field approach that leads to these results. We also show that the effect of the Berry phase turns out to be crucial to produce first-order paramagnetic-ferromagnetic transitions near half filling with transition temperatures compatible with the experimental situation. The computation relies on two crucial facts: the use of a mean-field ansatz that retains the complexity of a system of electrons with off-diagonal disorder, not fully taken into account by the mean-field techniques, and the small but significant antiferromagnetic superexchange interaction between the localized spins.
Resumo:
Near-infrared polarimetry observation is a powerful tool to study the central sources at the center of the Milky Way. My aim of this thesis is to analyze the polarized emission present in the central few light years of the Galactic Center region, in particular the non-thermal polarized emission of Sagittarius~A* (Sgr~A*), the electromagnetic manifestation of the super-massive black hole, and the polarized emission of an infrared-excess source in the literature referred to as DSO/G2. This source is in orbit about Sgr~A*. In this thesis I focus onto the Galactic Center observations at $\lambda=2.2~\mu m$ ($K_\mathrm{s}$-band) in polarimetry mode during several epochs from 2004 to 2012. The near-infrared polarized observations have been carried out using the adaptive optics instrument NAOS/CONICA and Wollaston prism at the Very Large Telescope of ESO (European Southern Observatory). Linear polarization at 2.2 $\mu m$, its flux statistics and time variation, can be used to constrain the physical conditions of the accretion process onto the central super-massive black hole. I present a statistical analysis of polarized $K_\mathrm{s}$-band emission from Sgr~A* and investigate the most comprehensive sample of near-infrared polarimetric light curves of this source up to now. I find several polarized flux excursions during the years and obtain an exponent of about 4 for the power-law fitted to polarized flux density distribution of fluxes above 5~mJy. Therefore, this distribution is closely linked to the single state power-law distribution of the total $K_\mathrm{s}$-band flux densities reported earlier by us. I find polarization degrees of the order of 20\%$\pm$10\% and a preferred polarization angle of $13^o\pm15^o$. Based on simulations of polarimetric measurements given the observed flux density and its uncertainty in orthogonal polarimetry channels, I find that the uncertainties of polarization parameters under a total flux density of $\sim 2\,{\mathrm{mJy}}$ are probably dominated by observational uncertainties. At higher flux densities there are intrinsic variations of polarization degree and angle within rather well constrained ranges. Since the emission is most likely due to optically thin synchrotron radiation, the obtained preferred polarization angle is very likely reflecting the intrinsic orientation of the Sgr~A* system i.e. an accretion disk or jet/wind scenario coupled to the super-massive black hole. Our polarization statistics show that Sgr~A* must be a stable system, both in terms of geometry, and the accretion process. I also investigate an infrared-excess source called G2 or Dusty S-cluster Object (DSO) moving on a highly eccentric orbit around the Galaxy's central black hole, Sgr~A*. I use for the first time the near-infrared polarimetric imaging data to determine the nature and the properties of DSO and obtain an improved $K_\mathrm{s}$-band identification of this source in median polarimetry images of different observing years. The source starts to deviate from the stellar confusion in 2008 data and it does not show a flux density variability based on our data set. Furthermore, I measure the polarization degree and angle of this source and conclude based on the simulations on polarization parameters that it is an intrinsically polarized source with a varying polarization angle as it approaches Sgr~A* position. I use the interpretation of the DSO polarimetry measurements to assess its possible properties.
Resumo:
The root knot nematode (RKN), Meloidogyne incognita, is widespread worldwide and a major pathogen of several cultivated crops. The use of resistant genotypes is the most effective and environmentally sound way to manage RKN. In this study, we screened 16 selected sweet potato cultivars including Amanda, Bárbara, Beatriz, Beauregard, Brazlândia Branca, Brazlândia Rosada, Brazlândia Roxa, BRS Amélia, BRS Cuia, BRS Rubissol, Carolina Vitória, Duda, Júlia, Marcela, PA-26/2009, and Princesa obtained from Embrapa and Universidade Federal do Tocantins? germplasm bank. Studies were conducted under greenhouse and field conditions and the agronomic performance of the cultivars was evaluated in a nematode and soilborne insect-infested field. All 16 sweet potato cultivars tested were rated as resistant to this nematode both under greenhouse and field conditions with reproduction factors < 1. In the field infested with M. incognita, sweet potato cultivars Duda, BRS Amélia, Beauregard, Brazlândia Rosada, and Brazlândia Roxa stood out as superior cultivars, with average yield ranging from 26 to 47 tons per ha. Overall, most cultivars exhibited a fusiform to near fusiform root shape, a good characteristic for the market, and were moderately affected by insects (attack incidence 1 to 30%). As global demand for energy continues to rise, selecting new cultivars of sweet potatoes with increased resistance to nematode diseases and with high yield will be important for food security and biofuel production.
Resumo:
The tridecameric Al-polymer [AlO4Al12(OH)24(H2O)12]7+ was prepared by forced hydrolysis of Al3+ up to an OH/Al molar ratio of 2.2. Under slow evaporation crystals were formed of Al13-nitrate. Upon addition of sulfate the tridecamer crystallised as the monoclinic Al13-sulfate. These crystals have been studied using near-infrared spectroscopy and compared to Al2(SO4)3.16H2O. Although the near-infrared spectra of the Al13-sulfate and nitrate are very similar indicating similar crystal structures, there are minor differences related to the strength with which the crystal water molecules are bonded to the salt groups. The interaction between crystal water and nitrate is stronger than with the sulfate as reflected by the shift of the crystal water band positions from 6213, 4874 and 4553 cm–1 for the Al13 sulfate towards 5925, 4848 and 4532 cm–1 for the nitrate. A reversed shift from 5079 and 5037 cm–1 for the sulfate towards 5238 and 5040 cm–1 for the nitrate for the water molecules in the Al13 indicate that the nitrate-Al13 bond is weakened due to the influence of the crystal water on the nitrate. The Al-OH bond in the Al13 complex is not influenced by changing the salt group due to the shielding by the water molecules of the Al13 complex.
Resumo:
Visible, near-infrared, IR and Raman spectra of magnesian gaspeite are presented. Nickel ion is the main source of the electronic bands as it is the principal component in the mineral where as the bands in IR and Raman spectra are due to the vibrational processes in the carbonate ion as an entity. The combination of electronic absorption and vibrational spectra (including near-infrared, FTIR and Raman) of magnesian gaspeite are explained in terms of the cation co-ordination and the behaviour of CO32– anion in the Ni–Mg carbonate. The electronic absorption spectrum consists of three broad and intense bands at 8130, 13160 and 22730 cm–1 due to spin-allowed transitions and two weak bands at 20410 and 30300 cm–1 are assigned to spin-forbidden transitions of Ni2+ in an octahedral symmetry. The crystal field parameters evaluated from the observed bands are Dq = 810; B = 800 and C = 3200 cm–1. The two bands in the near-infrared spectrum at 4330 and 5130 cm–1 are overtone and combination of CO32– vibrational modes. For the carbonate group, infrared bands are observed at 1020 cm–1(1 ), 870 cm–1 (2), 1418 cm–1 (3) and 750 cm–1 (4), of which3, the asymmetric stretching mode is most intense. Three well resolved Raman bands at 1571, 1088 and 331 cm–1 are assigned to 3, 1 and MO stretching vibrations.
Resumo:
For a largely arid country with generally low relief, Australia has a remarkably large number and variety of waterfalls. Found mainly near the coast, close to where most of the population lives and near the major tourist resort areas, these landscape features have long been popular scenic attractions. As sights to see and places to enjoy a variety of recreational activities, waterfalls continue to play an important role in Australia’s tourism, even in seaside resort areas where the main attractions are sunshine, sandy beaches and surf. The aesthetic appeal of waterfalls and their value as recreational resources are recognized by the inclusion of many in national parks. Even here, demands of visitors and pressures from developers raise serious problems. This paper examines the way in which waterfalls have been developed and promoted as tourist attractions, demonstrating their importance to Australian tourism. It considers threats to the sustainable use of waterfall resources posed by power schemes and, particularly, by the tourist industry itself. Queensland’s Gold Coast is selected as a case study, and comparisons are made with other areas in which waterfalls have played important roles as tourist attractions, especially the Yorkshire coast of northeast England. The discussion draws largely on an examination of tourist literature from the nineteenth to the twenty-first century, including holiday brochures and guide books, as well as other published sources, together with field observation in various parts of the world