947 resultados para Mycobacterium infections
Resumo:
Objective—To determine whether Mycobacterium bovis can be transmitted from experimentally infected deer to uninfected in-contact deer. Animals—Twenty-three 6-month-old white-tailed deer. Procedure—On day 0, M bovis (2 X 108 colony-forming units) was administered by intratonsillar instillation to 8 deer; 3 control deer received saline (0.9% NaCl) solution. Eight in-contact deer were comingled with inoculated deer from day 21. On day 120, inoculated deer were euthanatized and necropsied. On day 180, 4 in-contact deer were euthanatized, and 4 new incontact deer were introduced. On day 360, all in-contact deer were euthanatized. Rectal, oral, and nasal swab specimens and samples of hay, pelleted feed, water, and feces were collected for bacteriologic culture. Tissue specimens were also collected at necropsy for bacteriologic culture and histologic analysis. Results—On day 90, inoculated and in-contact deer developed delayed-type hypersensitivity (DTH) reactions to purified protein derivative of M bovis. Similarly, new in-contact deer developed DTH reactions by 100 days of contact with original in-contact deer. Tuberculous lesions in in-contact deer were most commonly detected in lungs and tracheobronchial and medial retropharyngeal lymph nodes. Mycobacterium bovis was isolated from nasal secretions and saliva from inoculated and in-contact deer, urine and feces from in-contact deer, and hay and pelleted feed. Conclusions and Clinical Relevance—Mycobacterium bovis is efficiently transmitted from experimentally infected deer to uninfected in-contact deer through nasal secretions, saliva, or contaminated feed. Wildlife management practices that result in unnatural gatherings of deer may enhance both direct and indirect transmission of M bovis.
Resumo:
Mycobacterium bovis, the causative agent of bovine tuberculosis, has become established in free-ranging white-tailed deer Odocoileus virginianus in northeastern Michigan. The practice of supplemental feeding of white-tailed deer during the winter is believed to contribute to transmission of M. bovis between deer. The current study was conducted to determine the ability of M. bovis to survive on various feedstuffs commonly used as supplemental feed for deer in northeast Michigan (i.e., apples, corn, carrots, sugar beets, potatoes, and hay) and the effect of maintenance at 220 C, 8 C, and 23 C on survival. Mycobacterium bovis survived on all feedstuffs at all temperatures tested for at least 7 days. At 23 C, M. bovis could still be isolated from samples of apples, corn and potatoes at 112 days. This study suggests that contamination of feedstuffs by M. bovis-infected deer could act as a source of indirect transmission between deer because M. bovis is able to survive in temperatures similar to those recorded during winter months in northeastern Michigan. Current efforts to ban or control supplemental feeding of deer should have a positive effect on decreasing transmission of M. bovis among deer.
Resumo:
White-tailed deer (Odocoileus virginianus) have recently emerged as a source of Mycobacterium bovis infection for cattle within North America. The objective of this study was to evaluate the antibody response of M. bovis–infected deer to crude mycobacterial antigens. Deer were experimentally inoculated with M. bovis strain 1315 either by intratonsilar instillation or by exposure to M. bovis–infected (i.e., in contact) deer. To determine the time course of the response, including the effects of antigen administration for comparative cervical skin testing, serum was collected periodically and evaluated by enzyme-linked immunosorbent assay (ELISA) for immunoglobulin (i.e., IgG heavy and light chains) reactivity to mycobacterial antigens. The reactivity to M. bovis purified protein derivative (PPDb) exceeded (P < 0.05) the reactivity to M. avium PPD (PPDa) only after in vivo administration of PPDa and PPDb for comparative cervical testing of the infected deer. The mean immunoglobulin response, as measured by ELISA, of intratonsilar-inoculated deer to a proteinase K–digested whole-cell sonicate (WCS-PK) of M. bovis strain 1315 exceeded (P < 0.05) the mean of the prechallenge responses to this antigen at approximately 1 month after inoculation and throughout the remainder of the study (i.e., ~11 months). This response also exceeded (P < 0.05) that of the uninfected deer. Although this is encouraging, further studies are necessary to validate the use of the proteinase K–digested M. bovis antigens in the antibody-based assays of tuberculosis.
Resumo:
Bovine tuberculosis (TB) is an infectious and communicable granulomatous disease caused by the acidfast bacilli bacteria of Mycobacterium bovis (M. bovis). It is commonly a chronic, debilitating disease, but occasionally may assume an acute, rapidly progressive course. M. bovisis a widespread zoonosis that is global in magnitude and affects nearly all species of vertebrates (cattle, sheep, goats, pigs, bison, buffalo, and camelids.) Disease is spread by direct contact, inhalation of infected droplets expelled from infected lungs, and ingestion of contaminated feed or milk. In most countries, TB is a notifiable disease. Overall, TB has an important world-wide impact on animal industries and human health. Control measures are based on prevention and eradication. Surveillance is a key element for management of preventions and control programs. Surveillance for TB serves the purpose of enabling Veterinary Services to obtain an accurate picture of the scope of the disease in the US livestock populations; in the event of a disease outbreak, the course TB follows in livestock and wildlife populations for a given area over time; and permits timely intervention if the trend observed deviates from what is expected.
Resumo:
A 4.5 yr-old male white-tailed deer (Odocoileus virginianus) killed by a hunter during the 1994 firearm hunting season in northeastern Michigan (USA) had lesions suggestive of tuberculosis and was positive on culture for Mycobacterium bovis the causative agent for bovine tuberculosis. Subsequently, a survey of 354 hunter-harvested white-tailed deer for tuberculosis was conducted in this area from 15 November 1995 through 5 January 1996. Heads and/or lungs from deer were examined grossly and microscopically for lesions suggestive of bovine tuberculosis. Gross lesions suggestive of tuberculosis were seen in 15 deer. Tissues from 16 deer had acid-fast bacilli on histological examination and in 12 cases mycobacterial isolates from lymph nodes and/or lungs were identified as M. bovis. In addition, lymph nodes from 12 deer (11 females and 1 male) without gross or microscopic lesions were pooled into 1 sample from which M. bovis was cultured. Although more male (9) than female (3) deer had bovine tuberculosis infections, this difference was not statistically significant. Mycobacterium bovis culture positive deer ranged in age from 1.5 to 5.5 yr with a mean of 2.7 yr (median 2.5 yr) for males and 3.2 yr (median 3.5 yr) for females. This appears to be the first epidemic occurrence of M. bovis in free-ranging cervids in North America. A combination of environmental (high deer density and poor quality habit) and management-related factors (extensive supplemental feeding) may be responsible for this epizootic.
Resumo:
Wildlife reservoirs of Mycobacterium bovis represent serious obstacles to the eradication of tuberculosis in domestic livestock and the cause for many faltering bovine tuberculosis eradication programs. One approach in dealing with wildlife reservoirs of disease is to interrupt inter-species and intraspecies transmission through vaccination of deer or cattle. To evaluate the efficacy of BCG vaccination in white-tailed deer, 35 deer were assigned to one of three groups; one s.c. dose of 107 CFU of M. bovis BCG Pasteur (n = 12); 1 s.c. dose of 107 CFU of M. bovis BCG Danish (n = 11); or unvaccinated deer (n = 12). After vaccination, deer were inoculated intratonsilarly with virulent M. bovis. Lesion severity scores of the medial retropharyngeal lymph node, as well as all lymph nodes combined, were reduced in vaccinated deer compared to unvaccinated deer. BCG Danish vaccinated deer had no late stage granulomas characterized by coalescent caseonecrotic granulomas containing numerous acid-fast bacilli compared to BCG Pasteur vaccinated or unvaccinated deer where such lesions were present. Both BCG strains were isolated as late as 250 days after vaccination from deer that were vaccinated but not challenged. In white-tailed deer, BCG provides protection against challenge with virulent M. bovis. Issues related to vaccine persistence, safety and shedding remain to be further investigated.
Resumo:
Wildlife reservoirs of Mycobacterium bovis represent serious obstacles to the eradication of tuberculosis in domestic livestock. In Michigan, USA tuberculous white-tailed deer transmit M. bovis to cattle. One approach in dealing with this wildlife reservoir is to vaccinate deer in order to interrupt the cycle of deer to deer and deer to cattle transmission. Thirty-one white-tailed deer were assigned to one of three groups; 2 SC doses of 107 CFU of M. bovis BCG (n = 11); 1 SC dose of 107 CFU of M. bovis BCG (n = 10); or unvaccinated deer (n = 10). After vaccination, deer were inoculated intratonsilarly with 300 CFU of virulent M. bovis. Gross lesion severity scores of the medial retropharyngeal lymph node were significantly reduced in deer receiving 2 doses of BCG compared to unvaccinated deer. Vaccinated deer had fewer lymph node granulomas than unvaccinated deer, and most notably, fewer late stage granulomas characterized by coalescent caseonecrotic granulomas containing numerous acid-fast bacilli. BCG was isolated from 7/21 vaccinated deer as long as 249 days after vaccination. In one case BCG was transmitted from a vaccinated deer to an unvaccinated deer. In white-tailed deer BCG provides measurable protection against challenge with virulent M. bovis. However, persistence of vaccine within tissues as well as shedding of BCG from vaccinates remain areas for further investigation.
Resumo:
Tuberculosis due to Mycobacterium bovis in captive Cervidae was identified as an important disease in the United States in 1990 and prompted the addition of captive Cervidae to the USDA Uniform Methods and Rules for eradication of bovine tuberculosis. As well, M. bovis infection was identified in free-ranging white-tailed deer in northeast Michigan in 1995. Tuberculosis in both captive and free-ranging Cervidae represents a serious challenge to the eradication of M. bovis infection from the United States. Currently, the only approved antemortem tests for tuberculosis in Cervidae are the intradermal tuberculin skin test and the blood tuberculosis test (BTB). At present, the BTB is not available in North America. Tuberculin skin testing of Cervidae is time-consuming and involves repeated animal handling and risk of injury to animals and humans. This study evaluated the potential of a new blood-based assay for tuberculosis in Cervidae that would decrease animal handling, stress, and losses due to injury. In addition, a blood-based assay could provide a more rapid diagnosis. Twenty 6–9-month-old white-tailed deer, male and female, were experimentally inoculated by instillation of 300 colony-forming units of M. bovis in the tonsillar crypts. Seven, age-matched uninfected deer served as controls. Blood was collected on days 90, 126, 158, 180, 210, 238, 263, and 307 after inoculation and was analyzed for the production of interferon-γ (IFN-γ) in response to incubation with M. bovis purified protein derivative (PPDb), M. avium PPDa, pokeweed mitogen (PWM), or media alone. Production of IFN-g in response to PPDb was significantly greater (P < 0.05) at all time points in samples from M. bovis–infected deer as compared with uninfected control deer, whereas IFN-γ production to PWM did not differ significantly between infected and control deer. Measurement of IFN-γ production to PPDb may serve as a useful assay for the antemortem diagnosis of tuberculosis in Cervidae.
Resumo:
A virus, tentatively identified as reo-like, occurred concurrently with experimentally-induced Baculovirus penaei (BP) infection in cultured white shrimp larvae Penaeus vannamei. Each shrimp with a reo-like viral infection also had a BP infection, but not all BP-infected shrimp had a reo-like infection. Both viruses occurred in the same tissues and occasionally withln the same cell. The reolike virus developed in epithelial cells of the anterior midgut and in reserve- and fibrillar-cells of the hepatopancreas. The paraspherical and non-enveloped reo-like virions (ca. 50 nm diam.) occurred as unordered aggregates in the cell cytoplasm. Their etiology has not been determined. Reo-like virions may have been introduced along with the BP virus, or, were latent and only manifested due to stress induced by the more pathogenic BP virus.
Resumo:
1. Hydatid cysts are found in more than 30 per cent of all cattle, sheep and goats in Kenya, but the disease is prevalent in man only in the semi-desert area of Turkana. Up to the time of the present investigation the life-cycle of the parasite in East Africa had not been studied, but it was suggested that wild carnivores, such as hyenas and jackals, might be the main hosts of the adult worms. 2. One hundred and forty-three carnivores, representing 23 species, have been examined. Echinococcus adults were found in 27 out of 43 domestic dogs (Canis familiaris), in three out of four hunting dogs (Lycaon pictus), in one out of nine jackals (Thos mesomelas), and in three out of 19 hyaenas (Crocuta crocuta). 3. A detailed morphological study was made of the Kenya material. After comparison with specimens from other parts of the world, it was concluded that the only species occurring in Kenya was E. granulosus, but it is possible that the minor morphological and biological differences are evidence of distinct strains. Further laboratory studies are necessary to compare the parasite from man and animals in different parts of Kenya with material from elsewhere. 4. A search was made for larval hydatids in 92 ungulates representing 18 species, and in a miscellaneous collection of nearly 2,000 rodents and primates representing a further 31 species. Only one animal was positive, a wildebeest (Gorgon taurinus). 5. The infections in the wild carnivores were all very light; only domestic dogs were heavily infected. It is concluded that the main cycle of transmission in Kenya is between dogs and domestic livestock. 6. Turkana tribesmen are the most heavily infected people in Kenya, either because the strain of parasite is more pathogenic to man in that area, or, more probably, because of the intimate contact between children and the large number of infected dogs. A particularly dangerous custom in the area is the use of dogs to clean the face and anal regions of babies when they vomit or have diarrhea. No satisfactory explanation can be given for the rarity of the disease in man in many of the other areas of Kenya where hydatids are very common in domestic animals. 7. The control of the disease will depend upon an active health-education campaign, together with the destruction of all unregistered dogs and improvement in meat hygiene.
Resumo:
In order to determine potential definitive hosts of the digenetic trematode, Bolbophorus damnificus, two American White Pelicans (Pelecanus erythrorhynchos), two Double-crested Cormorants (Phalacrocorax auritus), two Great Blue Herons (Ardea herodias), and two Great Egrets (Ardea alba) were captured, treated with praziquantel, and fed channel catfish (Ictalurus punctatus) infected with B. damnificus metacercariae. Patent infections of B. damnificus, which developed in both American White Pelicans at 3 days post-infection, were confirmed by the presence of trematode ova in the feces. Mature B. damnificus trematodes were recovered from the intestines of both pelicans at 21 days post-infection, further confirming the establishment of infection. No evidence of B. damnificus infections was observed in the other bird species studied. This study provides further evidence that Double-crested Cormorants, Great Blue Herons, and Great Egrets do not serve as definitive hosts for B. damnificus.
Resumo:
Several wildlife species have tested positive for bovine tuberculosis in Michigan and may potentially transmit the disease to other animals. Coyotes have the highest known prevalence in the endemic area and thus, our objective was to investigate the shedding of Mycobacterium bovis by coyotes. Four coyotes were orally inoculated with 1 ml of 1 x 105 CFU/ml of M. bovis. Oral and nasal swabs, and feces were collected regularly and tested by culture. Fecal samples were also tested by exposing guinea pigs to the coyotes' feces. All animals were necropsied to determine if infection occurred. All swabs, feces and tissues were negative on culture. The dosage of M. bovis given to these coyotes was considered biologically relevant, but was insufficient for causing infection. Due to the lack of infection, we still do not know the risk coyotes pose for shedding M. bovis.
Resumo:
We investigated the efficacy of oral and parenteral Mycobacterium bovis bacille Calmette-Guerin Danish strain 1331 (BCG) in its ability to protect white-tailed deer (Odocoileus virginianus) against disease caused by M. bovis infection. Twenty-two white-tailed deer were divided into four groups. One group (n=5) received 109 colony-forming units (cfu) BCG via a lipid-formulated oral bait; one group (n=5) received 109 cfu BCG in culture directly to the oropharynx, one group (n=6) was vaccinated with 106 cfu BCG subcutaneously, and one group served as a control and received culture media directly to the oropharynx (n=6). All animals were challenged 3 mo after vaccination. Five months postchallenge the animals were examined for lesions. Results indicate that both oral forms of BCG and parenterally administerd BCG offered significant protection against M. bovis challenge as compared to controls. This study suggests that oral BCG vaccination may be a feasible means of controlling bovine tuberculosis in wild white-tailed deer populations.
Resumo:
Bovine tuberculosis (bovine TB), caused by Mycobacterium bovis, has reemerged in northern Michigan, USA, with detections in white-tailed deer (Odocoileus virginianus) in 1994 and in cattle in 1998. Since then, significant efforts have been directed toward reducing deer densities in the area in the hopes of reducing the bovine TB prevalence rate in deer and eliminating spillover of the disease into cattle. Despite the success of the efforts to reduce deer densities, additional cattle herds have become infected. Other mammals can be infected with M. bovis, and some carnivores and omnivores had been found to be infected with the disease in northern Michigan, USA. We conducted a multiyear surveillance effort to detect bovine TB in wild species of mammals in the Michigan, USA, outbreak area. From 2002 to 2004, tissue samples from 1,031 individual animals of 32 species were collected, processed, and cultured for M. bovis. Only 10 (1.0%) were culture-positive for M. bovis (five raccoons [Procyon lotor], four opossums [Didelphis virginiana], and one grey fox [Urocyon cinereoargenteus]). We also found two raccoons and four opossums to be positive for Mycobacterium avium. We collected 503 environmental samples from cattle farms recently identified as bovine TB positive; none yielded positive M. bovis culture results. Finally, we used infrared cameras to document wildlife use of four barns in the area. Many avian and mammalian species of wildlife were observed, with raccoons being the most commonly observed species. This surveillance study identified no new wildlife species that should be considered significant reservoirs of bovine TB in the outbreak area in northern Michigan, USA. However, the relatively high, apparent bovine TB prevalence rates in some carnivorous and omnivorous species, their relatively long life spans, and their frequent use of barns, suggests that removal of raccoons, opossums, foxes, and coyotes (Canis latrans) should be considered when a newly infected farm is depopulated of cattle.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)