984 resultados para Mus domesticus domesticus : embriões : sobrevivência in vitro
Resumo:
Flattening filter free (FFF) linear accelerators allow for an increase in instantaneous dose-rate of the x-ray pulses by a factor of 2-6 over the conventional flattened output. As a result, radiobiological investigations are being carried out to determine the effect of these higher dose-rates on cell response. The studies reported thus far have presented conflicting results, highlighting the need for further investigation. To determine the radiobiological impact of the increased dose-rates from FFF exposures a Varian Truebeam medical linear accelerator was used to irradiate two human cancer cell lines in vitro, DU-145 prostate and H460 non-small cell lung, with both flattened and FFF 6 MV beams. The fluence profile of the FFF beam was modified using a custom-designed Nylon compensator to produce a similar dose profile to the flattened beam (6X) at the cell surface but at a higher instantaneous dose-rate. For both cell lines there appeared to be no significant change in cell survival. Curve fitting coefficients for DU145 cells irradiated with constant average dose-rates were 6X: alpha = 0.09 +/- 0.03, beta = 0.03 +/- 0.01 and 6FFF: alpha = 0.14 +/- 0.13, beta = 0.03 +/- 0.02 with a significance of p = 0.75. For H460 cells irradiated with the same instantaneous dose-rate but different average dose-rate the fit coefficients were 6FFF (low dose-rate): alpha = 0.21 +/- 0.11, 0.07 +/- 0.02 and 6FFF (high dose-rate): alpha = 0.21 +/- 0.16, 0.07 +/- 0.03, with p = 0.79. The results indicate that collective damage behaviour does not occur at the instantaneous dose-rates investigated here and that the use of either modality should result in the same clinical outcome, however this will require further validation in vivo.
Resumo:
The biocompatibility of NiTi after laser welding was studied by examining the in vitro (mesenchymal stem cell) MSC responses at different sets of time varying from early (4 to 12 h) to intermediate phases (1 and 4 days) of cell culture. The effects of physical (surface roughness and topography) and chemical (surface Ti/Ni ratio) changes as a consequence of laser welding in different regions (WZ, HAZ, and BM) on the cell morphology and cell coverage were studied. The results in this research indicated that the morphology of MSCs was affected primarily by the topographical factors in the WZ: the well-defined and directional dendritic pattern and the presence of deeper grooves. The morphology of MSCs was not significantly modulated by surface roughness. Despite the possible initial Ni release in the medium during the cell culture, no toxic effect seemed to cause to MSCs as evidenced by the success of adhesion and spreading of the cells onto different regions in the laser weldment. The good biocompatibility of the NiTi laser weldment has been firstly reported in this study.
Resumo:
The effect of glycosylation on susceptibility of skin collagen to collagenase digestion was studied in a skin sample obtained at autopsy from the interscapular region of a 24 year old white male who had died of an acute illness and who had no history of diabetes. Homogeneous suspensions of insoluble collagen were prepared, and were incubated in 50 mmol l-1 dextrose at pH 7.35 and 37 degrees C for 7 days. Non-enzymatic glycosylation measured by the weak acid hydrolysis/thiobarbituric acid method increased from 13.1 +/- 1.0 (n = 5) to 45.2 +/- 5.5 (n = 8) nmol fructose per 10 mg collagen (P less than 0.001). Digestion of collagen using clostridial collagenase was monitored by measuring (a) hydroxyproline content and (b) absorption at 206 nm of the supernatant after centrifugation to remove substrate. The rate of digestion was similar in glycosylated and control collagen. We conclude that the ketoamine link formed in non-enzymatic glycosylation does not increase the resistance of collagen to enzymatic digestion. The possibility remains that subsequent rearrangement of this link could be important in this respect.
Resumo:
In a group of eighteen patients with uveal melanomas, seven underwent low-dose pre-enucleation irradiation of approximately 2000 cGy. All the tumours were propagated in tissue culture and the growth characteristics of tumour cells from irradiated eyes were compared with tumour cells from non-irradiated eyes. Cultures were observed with phase-contrast microscopy, and radioactive thymidine labelling was used to study cell turnover. Although tissue samples from peripheral areas of irradiated tumours produced a mixture of viable and non-viable cells, with reduced ability to attach to substrate, central regions of irradiated tumours contained viable cells which propagated freely in tissue culture.
Resumo:
Introduction: High density lipoproteins (HDL) have considerable potential for improving cardiovascular health. Additionally, epidemiological studies have identified an inverse relationship between a-tocopherol intake and cardiovascular disease, which has not been translated in randomised controlled trials. Objectives: This study assessed if increased α-tocopherol within HDL2 and HDL3 (HDL2&3) influenced their antiatherogenic potential. In the first of two in vitro investigations, the oxidation potential of HDL2&3 was assessed when α-tocopherol was added following their isolation. In the second, their oxidation potential was assessed when HDL2&3 were isolated from serum pre-incubated with α-tocopherol. Additionally, a 6-week placebo-controlled intervention with α-tocopherol assessed if α-tocopherol influenced the oxidation potential and activities of HDL2&3-associated enzymes, paraoxonase-1 (PON-1) and lecithin cholesteryl acyltransferase (LCAT). Results: Conflicting results arose from the in vitro investigations, whereby increasing concentrations of α-tocopherol protected HDL2&3 against oxidation in the post-incubated HDL2&3, and promoted HDL2&3-oxidation when they were isolated from serum pre-incubated with α-tocopherol. Following the 6-week placebo-controlled investigation, α-tocopherol increased in HDL2&3, while HDL2&3 became more susceptible to oxidation, additionally the activities of HDL2&3-PON-1 and HDL2-LCAT decreased. Conclusion: These results have shown for the first time that α-tocopherol induces changes to HDL2&3, which could contribute to the pathophysiology of cardiovascular disease.
Resumo:
SUMMARY A study was carried out to investigate whether the action of triclabendazole sulphoxide (TCBZ.SO) against the liver fluke, Fasciola hepatica is altered by inhibition of P-glycoprotein (Pgp)-linked drug efflux pumps. The Oberon TCBZ-resistant and Cullompton TCBZ-susceptible fluke isolates were used for this in vitro study and the Pgp inhibitor selected was R(+)-verapamil [R(+)-VPL]. For experiments with the Oberon isolate, flukes were incubated for 24 h with either R(+)-VPL (1×10-4 m) on its own, TCBZ.SO (15 µg mL-1) alone, a combination of R(+)-VPL (1×10-4 m) plus TCBZ.SO (15 µg mL-1), TCBZ.SO (50 µg mL-1) on its own, or a combination of TCBZ.SO (50 µg mL-1) plus R(+)-VPL (1×10-4 m). They were also incubated in TCBZ.SO (50 µg mL-1) alone or in combination with R(+)-VPL (1×10-4 m) until they became inactive; and in TCBZ.SO (50 µg mL-1) alone for a time to match that of the combination inactivity time. Flukes from the Cullompton isolate were treated with either TCBZ.SO (50 µg mL-1) alone or in combination with R(+)-VPL (1×10-4 m) until they became inactive, or with TCBZ.SO (50 µg mL-1) alone time-matched to the combination inactivity time. Morphological changes resulting from drug treatment and following Pgp inhibition were assessed by means of scanning electron microscopy. Incubation in R(+)-VPL alone had a minimal effect on either isolate. TCBZ.SO treatment had a relatively greater impact on the TCBZ-susceptible Cullompton isolate. When R(+)-VPL was combined with TCBZ.SO in the incubation medium, however, the surface disruption to both isolates was more severe than that seen after TCBZ.SO treatment alone; also, the time taken to reach inactivity was shorter. More significantly, though, the potentiation of drug activity was greater in the Oberon isolate; also, it was more distinct at the higher concentration of TCBZ.SO. So, the Oberon isolate appears to be particularly sensitive to efflux pump inhibition. The results of this study suggest that enhanced drug efflux in the Oberon isolate may be involved in the mechanism of resistance to TCBZ.
Resumo:
We describe a simple one-step technique for the growth of human B cell colonies in semi-solid agar in vitro. This method used conditioned medium from the human plasmacytoma cell line LICR-LON-H My 2 as a source of stimulating activity. A linear relationship exists between the number of B cells seeded and the number of colonies formed (r = 0.95). Most colony forming cells, approximately 1 in 500 of B cells seeded, lack surface immunoglobulin, possess Fc receptors and mark with the Leu 12 monoclonal antibody. Cells within developing colonies are found to have cytoplasmic IgM, IgA and IgG depending on the length of time in culture.
Resumo:
Ethnopharmacological relevance: The ethnobotanical use of Aframomum melegueta in the treatment of urinary tract and soft tissue infection suggested that the plant has antimicrobial activity.
Materials and methods: To substantiate the folkloric claims, an acetone, 50:50 acetone:methanol and 2:1 chloroform:methanol extracts were tested against Escherichia coli K12; acetone extract and the fractions of acetone extracts were tested against Listeria monocytogenes. Bioassay-guided fractionation was performed on the extract using L. monocytogenes as the test organism to isolate the bioactive compounds which were then tested against all the other organisms.
Results: Four known labdane diterpenes (G3 and G5) were isolated for the first time from the rhizomes of A. melegueta and purified. These were tested against E. coli, L. monocytogenes, methicillin resistant Staphylococus aureus (MRSA) and S. aureus to determine antibacterial activity. The result showed that two compounds G3 and G5 exhibited more potent antibacterial activity compared to the current clinically used antibiotics ampicillin, gentamicin and vancomycin and can be potential antibacterial lead compounds. The structure of the labdane diterpenes were elucidated using nuclear magnetic resonance (NMR) spectroscopy and Mass spectrometry. A possible mode of action of the isolated compound G3 and its potential cytotoxicity towards mammalian cells were also discussed.
Conclusion: The results confirmed the presence of antibacterial compounds in the rhizomes of A. melegueta with a favourable toxicity profile which could be further optimized as antibacterial lead compounds.
Resumo:
Despite considerable advances in reducing the production of dioxin-like toxicants in recent years, contamination of the food chain still occasionally occurs resulting in huge losses to the agri-food sector and risk to human health through exposure. Dioxin-like toxicity is exhibited by a range of stable and bioaccumulative compounds including polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), produced by certain types of combustion, and man-made coplanar polychlorinated biphenyls (PCBs), as found in electrical transformer oils. While dioxinergic compounds act by a common mode of action making exposure detection biomarker based techniques a potentially useful tool, the influence of co-contaminating toxicants on such approaches needs to be considered. To assess the impact of possible interactions, the biological responses of H4IIE cells to challenge by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in combination with PCB-52 and benzo-a-pyrene (BaP) were evaluated by a number of methods in this study. Ethoxyresorufin-O-deethylase (EROD) induction in TCDD exposed cells was suppressed by increasing concentrations of PCB-52, PCB-153, or BaP up to 10 mu M. BaP levels below 1 mu M suppressed TCDD stimulated EROD induction, but at higher concentrations, EROD induction was greater than the maximum observed when cells were treated with TCDD alone. A similar biphasic interaction of BaP with TCDD co-exposure was noted in the AlamarBlue assay and to a lesser extent with PCB-52. Surface enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF) profiling of peptidomic responses of cells exposed to compound combinations was compared. Cells co-exposed to TCDD in the presence of BaP or PCB-52 produced the most differentiated spectra with a substantial number of non-additive interactions observed. These findings suggest that interactions between dioxin and other toxicants create novel, additive, and non-additive effects, which may be more indicative of the types of responses seen in exposed animals than those of single exposures to the individual compounds.
Resumo:
Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum biofilm eradication concentration (MBEC) and kill kinetics were established for vancomycin, rifampicin, trimethoprim, gentamicin, and ciprofloxacin against the biofilm forming bacteria Staphylococcus epidermidis (ATCC 35984), Staphylococcus aureus (ATCC 29213), Methicillin Resistant Staphylococcus aureus (MRSA) (ATCC 43300), Pseudomonas aeruginosa (PAO1), and Escherichia coli (NCTC 8196). MICs and MBCs were determined via broth microdilution in 96-well plates. MBECs were studied using the Calgary Biofilm Device. Values obtained were used to investigate the kill kinetics of conventional antimicrobials against a range of planktonic and biofilm microorganisms over a period of 24 hours. Planktonic kill kinetics were determined at 4xMIC and biofilm kill kinetics at relative MBECs. Susceptibility of microorganisms varied depending on antibiotic selected and phenotypic form of bacteria. Gram-positive planktonic isolates were extremely susceptible to vancomycin (highest MBC: 7.81 mg L−1: methicillin sensitive and resistant S. aureus) but no MBEC value was obtained against all biofilm pathogens tested (up to 1000 mg L−1). Both gentamicin and ciprofloxacin displayed the broadest spectrum of activity with MIC and MBCs in the mg L−1 range against all planktonic isolates tested and MBEC values obtained against all but S. epidermidis (ATCC 35984) and MRSA (ATCC 43300).
Resumo:
Epithelial to mesenchymal transition (EMT) is a process whereby epithelial cells undergo transition to a mesenchymal phenotype and contribute directly to fibrotic disease. Recent studies support a role for EMT in cutaneous fibrotic diseases including scleroderma and hypertrophic scarring, though there is limited data on the cytokines and signalling mechanisms regulating cutaneous EMT. We investigated the ability of TGF-β and TNF-α, both over-expressed in cutaneous scleroderma and central mediators of EMT in other epithelial cell types, to induce EMT in primary keratinocytes and studied the signalling mechanisms regulating this process. TGF-β induced EMT in normal human epidermal keratinocytes (NHEK cells) and this process was enhanced by TNF-α. EMT was characterised by changes in morphology, proteome (down-regulation of E-cadherin and Zo-1, and up-regulation of vimentin and fibronectin), MMP secretion and COL1α1 mRNA expression. TGF-β and TNF-α in combination activated SMAD and p38 signalling in NHEK cells. P38 inhibition with SB203580 partially attenuated EMT, whereas SMAD inhibition using SB431542 significantly inhibited EMT and also reversed established EMT. These data highlight the retained plasticity of adult keratinocytes and support further studies of EMT in clinically relevant in vivo models of cutaneous fibrosis, and investigation of SMAD inhibition as a potential therapeutic intervention. This article is protected by copyright. All rights reserved.