999 resultados para Multiple endpoints


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable isotopic characterization of chlorine in chlorinated aliphatic pollution is potentially very valuable for risk assessment and monitoring remediation or natural attenuation. The approach has been underused because of the complexity of analysis and the time it takes. We have developed a new method that eliminates sample preparation. Gas chromatography produces individually eluted sample peaks for analysis. The He carrier gas is mixed with Ar and introduced directly into the torch of a multicollector ICPMS. The MC-ICPMS is run at a high mass resolution of >= 10 000 to eliminate interference of mass 37 ArH with Cl. The standardization approach is similar to that for continuous flow stable isotope analysis in which sample and reference materials are measured successively. We have measured PCE relative to a laboratory TCE standard mixed with the sample. Solvent samples of 200 nmol to 1.3 mu mol ( 24- 165 mu g of Cl) were measured. The PCE gave the same value relative to the TCE as measured by the conventional method with a precision of 0.12% ( 2 x standard error) but poorer precision for the smaller samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the potential importance of scattering of long-wave radiation by clouds has been recognised, most studies have concentrated on the impact of high clouds and few estimates of the global impact of scattering have been presented. This study shows that scattering in low clouds has a significant impact on outgoing long-wave radiation (OLR) in regions of marine stratocumulus (-3.5 W m(-2) for overcast conditions) where the column water vapour is relatively low. This corresponds to an enhancement of the greenhouse effect of such clouds by 10%. The near-global impact of scattering on OLR is estimated to be -3.0 W m(-2), with low clouds contributing -0.9 W m(-2), mid-level cloud -0.7 W m(-2) and high clouds -1.4 W m(-2). Although this effect appears small compared to the global mean OLR of 240 W m(-2), it indicates that neglect of scattering will lead to an error in cloud long-wave forcing of about 10% and an error in net cloud forcing of about 20%.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With both climate change and air quality on political and social agendas from local to global scale, the links between these hitherto separate fields are becoming more apparent. Black carbon, largely from combustion processes, scatters and absorbs incoming solar radiation, contributes to poor air quality and induces respiratory and cardiovascular problems. Uncertainties in the amount, location, size and shape of atmospheric black carbon cause large uncertainty in both climate change estimates and toxicology studies alike. Increased research has led to new effects and areas of uncertainty being uncovered. Here we draw together recent results and explore the increasing opportunities for synergistic research that will lead to improved confidence in the impact of black carbon on climate change, air quality and human health. Topics of mutual interest include better information on spatial distribution, size, mixing state and measuring and monitoring. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Managing ecosystems to ensure the provision of multiple ecosystem services is a key challenge for applied ecology. Functional traits are receiving increasing attention as the main ecological attributes by which different organisms and biological communities influence ecosystem services through their effects on underlying ecosystem processes. Here we synthesize concepts and empirical evidence on linkages between functional traits and ecosystem services across different trophic levels. Most of the 247 studies reviewed considered plants and soil invertebrates, but quantitative trait–service associations have been documented for a range of organisms and ecosystems, illustrating the wide applicability of the trait approach. Within each trophic level, specific processes are affected by a combination of traits while particular key traits are simultaneously involved in the control of multiple processes. These multiple associations between traits and ecosystem processes can help to identify predictable trait–service clusters that depend on several trophic levels, such as clusters of traits of plants and soil organisms that underlie nutrient cycling, herbivory, and fodder and fibre production. We propose that the assessment of trait–service clusters will represent a crucial step in ecosystem service monitoring and in balancing the delivery of multiple, and sometimes conflicting, services in ecosystem management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncertainties associated with the representation of various physical processes in global climate models (GCMs) mean that, when projections from GCMs are used in climate change impact studies, the uncertainty propagates through to the impact estimates. A complete treatment of this ‘climate model structural uncertainty’ is necessary so that decision-makers are presented with an uncertainty range around the impact estimates. This uncertainty is often underexplored owing to the human and computer processing time required to perform the numerous simulations. Here, we present a 189-member ensemble of global river runoff and water resource stress simulations that adequately address this uncertainty. Following several adaptations and modifications, the ensemble creation time has been reduced from 750 h on a typical single-processor personal computer to 9 h of high-throughput computing on the University of Reading Campus Grid. Here, we outline the changes that had to be made to the hydrological impacts model and to the Campus Grid, and present the main results. We show that, although there is considerable uncertainty in both the magnitude and the sign of regional runoff changes across different GCMs with climate change, there is much less uncertainty in runoff changes for regions that experience large runoff increases (e.g. the high northern latitudes and Central Asia) and large runoff decreases (e.g. the Mediterranean). Furthermore, there is consensus that the percentage of the global population at risk to water resource stress will increase with climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical data are compared with EISCAT radar observations of multiple Naturally Enhanced Ion-Acoustic Line (NEIAL) events in the dayside cusp. This study uses narrow field of view cameras to observe small-scale, short-lived auroral features. Using multiple-wavelength optical observations, a direct link between NEIAL occurrences and low energy (about 100 eV) optical emissions is shown. This is consistent with the Langmuir wave decay interpretation of NEIALs being driven by streams of low-energy electrons. Modelling work connected with this study shows that, for the measured ionospheric conditions and precipitation characteristics, growth of unstable Langmuir (electron plasma) waves can occur, which decay into ion-acoustic wave modes. The link with low energy optical emissions shown here, will enable future studies of the shape, extent, lifetime, grouping and motions of NEIALs.