992 resultados para Module Modeling
Resumo:
The entry of human immunodeficiency virus (HIV) into cells depends on a sequential interaction of the gp120 envelope glycoprotein with the cellular receptors CD4 and members of the chemokine receptor family. The CC chemokine receptor CCR5 is such a receptor for several chemokines and a major coreceptor for the entry of R5 HIV type-1 (HIV-1) into cells. Although many studies focus on the interaction of CCR5 with HIV-1, the corresponding interaction sites in CCR5 and gp120 have not been matched. Here we used an approach combining protein structure modeling, docking and molecular dynamics simulation to build a series of structural models of the CCR5 in complexes with gp120 and CD4. Interactions such as hydrogen bonds, salt bridges and van der Waals contacts between CCR5 and gp120 were investigated. Three snapshots of CCR5-gp120-CD4 models revealed that the initial interactions of CCR5 with gp120 are involved in the negatively charged N-terminus (Nt) region of CCR5 and positively charged bridging sheet region of gp120. Further interactions occurred between extracellular loop2 (ECL2) of CCR5 and the base of V3 loop regions of gp120. These interactions may induce the conformational changes in gp120 and lead to the final entry of HIV into the cell. These results not only strongly support the two-step gp120-CCR5 binding mechanism, but also rationalize extensive biological data about the role of CCR5 in HIV-1 gp120 binding and entry, and may guide efforts to design novel inhibitors.
Resumo:
The chemokine receptor CCR5 is the receptor for several chemokines and major coreceptor for R5 human immunodeficiency virus type-1 strains entry into cell. Three-dimensional models of CCR5 were built by using homology modeling approach and 1 ns molecular dynamics (MD) simulation, because studies of site-directed mutagenesis and chimeric receptors have indicated that the N-terminus (Nt) and extracellular loops (ECLs) of CCR5 are important for ligands binding and viral fusion and entry, special attention was focused on disulfide bond function, conformational flexibility, hydrogen bonding, electrostatic interactions, and solvent-accessible surface area of Nt and ECLs of this protein part. We found that the extracellular segments of CCR5 formed a well-packet globular domain with complex interactions occurred between them in a majority of time of MID simulation, but Nt region could protrude from this domain sometimes. The disulfide bond Cys20-Cys269 is essential in controlling specific orientation of Nt region and maintaining conformational integrity of extracellular domain. RMS comparison analysis between conformers revealed the ECL1 of CCR5 stays relative rigid, whereas the ECL2 and Nt are rather flexible. Solvent-accessible surface area calculations indicated that the charged residues within Nt and ECL2 are often exposed to solvent. Integrating these results with available experimental data, a two-step gp120-CCR5 binding mechanism was proposed. The dynamic interaction of CCR5 extracellular domain with gp120 was emphasized. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Elderly and disabled people can be hugely benefited through the advancement of modern electronic devices, as those can help them to engage more fully with the world. However, existing design practices often isolate elderly or disabled users by considering them as users with special needs. This article presents a simulator that can reflect problems faced by elderly and disabled users while they use computer, television, and similar electronic devices. The simulator embodies both the internal state of an application and the perceptual, cognitive, and motor processes of its user. It can help interface designers to understand, visualize, and measure the effect of impairment on interaction with an interface. Initially a brief survey of different user modeling techniques is presented, and then the existing models are classified into different categories. In the context of existing modeling approaches the work on user modeling is presented for people with a wide range of abilities. A few applications of the simulator, which shows the predictions are accurate enough to make design choices and point out the implication and limitations of the work, are also discussed. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
Stone masonry spires are vulnerable to seismic loading. Computational methods are often used to predict the dynamic linear elastic response of masonry towers and spires, but this approach is only applicable until the first masonry joint begins to open, limiting the ability to predict collapse. In this paper, analytical modeling is used to investigate the uplift, rocking and collapse of stone spires. General equations for static equilibrium of the spire under lateral acceleration are first presented, and provide a reasonable lower bound for predicting collapse. The dynamic response is then considered through elastic modal analysis and rigid body rocking. Together, these methods are used to provide uplift curves and single impulse overturning collapse curves for a complete range of possible spire geometries. Results are used to evaluate the historic collapse of two specific stone spires. © 2012 Elsevier Ltd.
Resumo:
Analytical methods provide a global context from which to understand the dynamics of stone spires, but computational and experimental methods are useful to predict more specific behavior of multiple block structures. In this paper, the spire of St. Mary Magdalene church in Waltham-on-the-Wolds, UK, which was damaged in the 2008 Lincolnshire Earthquake, is used as a case study. Both a physical model and a discrete element computational model of the spire were created and used to investigate collapse under constant horizontal acceleration, impulse base motion, and earthquake ground motion. Results indicate that the global behavior compares well with analytical modeling, but local block displacements evident in DEM and experimental results also reduce the stability of the structure. In this context, the observed damage to St. Mary Magdalene church is evaluated and discussed. © 2012 Elsevier Ltd.
Resumo:
This paper is aimed at enabling the confident use of existing model test facilities for ultra deepwater application without having to compromise on the widely accepted range of scales currently used by the floating production industry. Passive line truncation has traditionally been the preferred method of creating an equivalent numerical model at reduced depth; however, these techniques tend to suffer in capturing accurately line dynamic response and so reproducing peak tensions. In an attempt to improve credibility of model test data the proposed truncation procedure sets up the truncated model, based on line dynamic response rather than quasi-static system stiffness. The upper sections of each line are modeled in detail, capturing the wave action zone and all coupling effects with the vessel. These terminate to an approximate analytical model that aims to simulate the remainder of the line. Stages 1 & 2 are used to derive a water depth truncation ratio. Here vibration decay of transverse elastic waves is assessed and it is found that below a certain length criterion, the transverse vibrational characteristics for each line are inertia driven, hence with respect to these motions the truncated model can assume a linear damper whose coefficient depends on the local line properties and vibration frequency. Stage 3 endeavors to match the individual line stiffness between the full depth and truncated models. In deepwater it is likely that taut polyester moorings will be used which are predominantly straight and have high axial stiffness that provides the principal restoring force to static and low frequency vessel motions. Consequently, it means that the natural frequencies of axial vibrations are above the typical wave frequency range allowing for a quasi-static solution. In cases of exceptionally large wave frequency vessel motions, localized curvature at the chain seabed segment and tangential skin drag on the polyester rope can increase dynamic peak tensions considerably. The focus of this paper is to develop an efficient scheme based on analytic formulation, for replicating these forces at the truncation. The paper will close with an example case study of a single mooring under extreme conditions that replicates exactly the static and dynamic characteristics of the full depth line. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE).
Resumo:
Computational fluid dynamics (CFD) simulations are becoming increasingly widespread with the advent of more powerful computers and more sophisticated software. The aim of these developments is to facilitate more accurate reactor design and optimization methods compared to traditional lumped-parameter models. However, in order for CFD to be a trusted method, it must be validated using experimental data acquired at sufficiently high spatial resolution. This article validates an in-house CFD code by comparison with flow-field data obtained using magnetic resonance imaging (MRI) for a packed bed with a particle-to-column diameter ratio of 2. Flows characterized by inlet Reynolds numbers, based on particle diameter, of 27, 55, 111, and 216 are considered. The code used employs preconditioning to directly solve for pressure in low-velocity flow regimes. Excellent agreement was found between the MRI and CFD data with relative error between the experimentally determined and numerically predicted flow-fields being in the range of 3-9%. © 2012 American Institute of Chemical Engineers (AIChE).
Resumo:
A 4-channel polymeric optical bus module suitable for use in board-level interconnections is presented. Low-loss and low-crosstalk module performance is achieved, while -1 dB alignment tolerances better than ± 8 μm are demonstrated. © 2012 OSA.
Resumo:
Analyses of crack growth under cyclic loading conditions are discussed where plastic flow arises from the motion of large numbers of discrete dislocations and the fracture properties are embedded in a cohesive surface constitutive relation. The formulation is the same as used to analyse crack growth under monotonic loading conditions, differing only in the remote loading being a cyclic function of time. Fatigue, i.e. crack growth in cyclic loading at a driving force for which the crack would have arrested under monotonic loading, emerges in the simulations as a consequence of the evolution of internal stresses associated with the irreversibility of the dislocation motion. A fatigue threshold, Paris law behaviour, striations, the accelerated growth of short cracks and the scaling with material properties are outcomes of the calculations. Results for single crystals and polycrystals will be discussed.
Resumo:
A three-dimensional (3D) numerical model is proposed to solve the electromagnetic problems involving transport current and background field of a high-T c superconducting (HTS) system. The model is characterized by the E-J power law and H-formulation, and is successfully implemented using finite element software. We first discuss the model in detail, including the mesh methods, boundary conditions and computing time. To validate the 3D model, we calculate the ac loss and trapped field solution for a bulk material and compare the results with the previously verified 2D solutions and an analytical solution. We then apply our model to test some typical problems such as superconducting bulk array and twisted conductors, which cannot be tackled by the 2D models. The new 3D model could be a powerful tool for researchers and engineers to investigate problems with a greater level of complicity.
Resumo:
This paper presents the steps and the challenges for implementing analytical, physics-based models for the insulated gate bipolar transistor (IGBT) and the PIN diode in hardware and more specifically in field programmable gate arrays (FPGAs). The models can be utilised in hardware co-simulation of complex power electronic converters and entire power systems in order to reduce the simulation time without compromising the accuracy of results. Such a co-simulation allows reliable prediction of the system's performance as well as accurate investigation of the power devices' behaviour during operation. Ultimately, this will allow application-specific optimisation of the devices' structure, circuit topologies as well as enhancement of the control and/or protection schemes.
Resumo:
This paper proposes a magnetic circuit model (MCM) for the design of a brushless doubly-fed machine (BDFM). The BDFM possesses advantages in terms of high reliability and reduced gearbox stages, and it requires a fractionally-rated power converter. This makes it suitable for utilization in offshore wind turbines. It is difficult for conventional design methods to calculate the flux in the stator because the two sets of stator windings, which have different pole number, form a complex flux pattern which is not easily determined using common analytical approaches. However, it is advantageous to predict the flux density in the teeth and air-gap at the initial design stage for sizing purposes without recourse finite element analysis. Therefore a magnetic circuit model is developed in this paper to calculate the flux density. A BDFM is used as a case study with FEA validation. © 1965-2012 IEEE.