972 resultados para Models, statistical
Resumo:
The monitoring of infection control indicators including hospital-acquired infections is an established part of quality maintenance programmes in many health-care facilities. However, surveillance data use can be frustrated by the infrequent nature of many infections. Traditional methods of analysis often provide delayed identification of increasing infection occurrence, placing patients at preventable risk. The application of Shewhart, Cumulative Sum (CUSUM) and Exponentially Weighted Moving Average (EWMA) statistical process control charts to the monitoring of indicator infections allows continuous real-time assessment. The Shewhart chart will detect large changes, while CUSUM and EWMA methods are more suited to recognition of small to moderate sustained change. When used together, Shewhart and EWMA methods are ideal for monitoring bacteraemia and multiresistant organism rates. Shewhart and CUSUM charts are suitable for surgical infection surveillance.
Resumo:
This is a reply to the comment by P Schlottmann and A A Zvyagin.
Resumo:
Genetic research on risk of alcohol, tobacco or drug dependence must make allowance for the partial overlap of risk-factors for initiation of use, and risk-factors for dependence or other outcomes in users. Except in the extreme cases where genetic and environmental risk-factors for initiation and dependence overlap completely or are uncorrelated, there is no consensus about how best to estimate the magnitude of genetic or environmental correlations between Initiation and Dependence in twin and family data. We explore by computer simulation the biases to estimates of genetic and environmental parameters caused by model misspecification when Initiation can only be defined as a binary variable. For plausible simulated parameter values, the two-stage genetic models that we consider yield estimates of genetic and environmental variances for Dependence that, although biased, are not very discrepant from the true values. However, estimates of genetic (or environmental) correlations between Initiation and Dependence may be seriously biased, and may differ markedly under different two-stage models. Such estimates may have little credibility unless external data favor selection of one particular model. These problems can be avoided if Initiation can be assessed as a multiple-category variable (e.g. never versus early-onset versus later onset user), with at least two categories measurable in users at risk for dependence. Under these conditions, under certain distributional assumptions., recovery of simulated genetic and environmental correlations becomes possible, Illustrative application of the model to Australian twin data on smoking confirmed substantial heritability of smoking persistence (42%) with minimal overlap with genetic influences on initiation.
Resumo:
In modeling expectation formation, economic agents are usually viewed as forming expectations adaptively or in accordance with some rationality postulate. We offer an alternative nonlinear model where agents exchange their opinions and information with each other. Such a model yields multiple equilibria, or attracting distributions, that are persistent but subject to sudden large jumps. Using German Federal Statistical Office economic indicators and German IFO Poll expectational data, we show that this kind of model performs well in simulation experiments. Focusing upon producers' expectations in the consumption goods sector, we also discover evidence that structural change in the interactive process occurred over the period of investigation (1970-1998). Specifically, interactions in expectation formation seem to have become less important over time.
Resumo:
Comparative phylogeography has proved useful for investigating biological responses to past climate change and is strongest when combined with extrinsic hypotheses derived from the fossil record or geology. However, the rarity of species with sufficient, spatially explicit fossil evidence restricts the application of this method. Here, we develop an alternative approach in which spatial models of predicted species distributions under serial paleoclimates are compared with a molecular phylogeography, in this case for a snail endemic to the rainforests of North Queensland, Australia. We also compare the phylogeography of the snail to those from several endemic vertebrates and use consilience across all of these approaches to enhance biogeographical inference for this rainforest fauna. The snail mtDNA phylogeography is consistent with predictions from paleoclimate modeling in relation to the location and size of climatic refugia through the late Pleistocene-Holocene and broad patterns of extinction and recolonization. There is general agreement between quantitative estimates of population expansion from sequence data (using likelihood and coalescent methods) vs. distributional modeling. The snail phylogeography represents a composite of both common and idiosyncratic patterns seen among vertebrates, reflecting the geographically finer scale of persistence and subdivision in the snail. In general, this multifaceted approach, combining spatially explicit paleoclimatological models and comparative phylogeography, provides a powerful approach to locating historical refugia and understanding species' responses to them.
Resumo:
Fault detection and isolation (FDI) are important steps in the monitoring and supervision of industrial processes. Biological wastewater treatment (WWT) plants are difficult to model, and hence to monitor, because of the complexity of the biological reactions and because plant influent and disturbances are highly variable and/or unmeasured. Multivariate statistical models have been developed for a wide variety of situations over the past few decades, proving successful in many applications. In this paper we develop a new monitoring algorithm based on Principal Components Analysis (PCA). It can be seen equivalently as making Multiscale PCA (MSPCA) adaptive, or as a multiscale decomposition of adaptive PCA. Adaptive Multiscale PCA (AdMSPCA) exploits the changing multivariate relationships between variables at different time-scales. Adaptation of scale PCA models over time permits them to follow the evolution of the process, inputs or disturbances. Performance of AdMSPCA and adaptive PCA on a real WWT data set is compared and contrasted. The most significant difference observed was the ability of AdMSPCA to adapt to a much wider range of changes. This was mainly due to the flexibility afforded by allowing each scale model to adapt whenever it did not signal an abnormal event at that scale. Relative detection speeds were examined only summarily, but seemed to depend on the characteristics of the faults/disturbances. The results of the algorithms were similar for sudden changes, but AdMSPCA appeared more sensitive to slower changes.
Resumo:
The bulk free radical copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N-vinyl-2-pyrrolidone (VP) was carried out to low conversions at 50 degreesC, using benzoyl peroxide (BPO) as initiator. The compositions of the copolymers; were determined using C-13 NMR spectroscopy. The conversion of monomers to polymers was studied using FT-NIR spectroscopy in order to predict the extent of conversion of monomer to polymer. From model fits to the composition data, a statistical F-test revealed that die penultimate model describes die copolymerization better than die terminal model. Reactivity ratios were calculated by using a non-linear least squares analysis (NLLS) and r(H) = 8.18 and r(V) = 0.097 were found to be the best fit values of the reactivity ratios for the terminal model and r(HH) = 12.0, r(VH) = 2.20, r(VV) = 0.12 and r(HV) = 0.03 for the penultimate model. Predictions were made for changes in compositions as a function of conversion based upon the terminal and penultimate models.
Resumo:
In this paper, we consider testing for additivity in a class of nonparametric stochastic regression models. Two test statistics are constructed and their asymptotic distributions are established. We also conduct a small sample study for one of the test statistics through a simulated example. (C) 2002 Elsevier Science (USA).
Resumo:
Warranty is an important element of marketing new products as better warranty signals higher product quality and provides greater assurance to customers. Servicing warranty involves additional costs to the manufacturer and this cost depends on product reliability and warranty terms. Product reliability is influenced by the decisions made during the design and manufacturing of the product. As such warranty is very important in the context of new products. Product warranty has received the attention of researchers from many different disciplines and the literature on warranties is vast. This paper carries out a review of the literature that has appeared in the last ten years. It highlights issues of interest to manufacturers in the context of managing new products from an overall business perspective. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Supersymmetric t-J Gaudin models with open boundary conditions are investigated by means of the algebraic Bethe ansatz method. Off-shell Bethe ansatz equations of the boundary Gaudin systems are derived, and used to construct and solve the KZ equations associated with sl (2\1)((1)) superalgebra.