957 resultados para Modeling technique
Resumo:
In this paper, we report an analysis of the protein sequence length distribution for 13 bacteria, four archaea and one eukaryote whose genomes have been completely sequenced, The frequency distribution of protein sequence length for all the 18 organisms are remarkably similar, independent of genome size and can be described in terms of a lognormal probability distribution function. A simple stochastic model based on multiplicative processes has been proposed to explain the sequence length distribution. The stochastic model supports the random-origin hypothesis of protein sequences in genomes. Distributions of large proteins deviate from the overall lognormal behavior. Their cumulative distribution follows a power-law analogous to Pareto's law used to describe the income distribution of the wealthy. The protein sequence length distribution in genomes of organisms has important implications for microbial evolution and applications. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
This paper is aimed at investigating the acoustic emission activities during indentation toughness tests on an alumina based wear resistant ceramic and 25 wt% silicon carbide whisker (SIC,) reinforced alumina composite. It has been shown that the emitted acoustic emission signals characterize the crack growth during loading. and unloading cycles in an indentation test. The acoustic emission results indicate that in the case of the composite the amount of crack growth during unloading is higher than that of loading, while the reverse is true in case of the wear resistant ceramics. Acoustic emission activity observed in wear resistant ceramic is less than that in the case of composite. An attempt has been made to correlate the acoustic emission signals with crack growth during indentation test.
Resumo:
Radially homogeneous bulk alloys of GaxIn1-xSb in the range 0.7 < x < 0.8, have been grown by vertical Bridgman technique. The factors affecting the interface shape during the growth were optimised to achieve zero convexity. From a series of experiments, a critical ratio of the temperature gradient (G) of the furnace at the melting point of the melt composition to the ampoule lowering speed (v) was deduced for attaining the planarity of the melt-solid interface. The studies carried out on directional solidification of Ga0.77In0.23Sb mixed crystals employing planar melt-solid interface exhibited superior quality than those with nonplanar interfaces. The solutions to certain problems encountered during the synthesis and growth of the compound were discussed. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The present research describes the modeling of the thermodynamic properties of the liquid Al-Ga-In-As alloys at 1073 and 1173 K, and investigates the solid-liquid equilibria in the systems. The isothermal molar excess free energy function for the liquid alloys is represented in terms of 37 parameters pertaining to six of the constituent binaries, four ternaries and the quaternary interactions in the system. The corresponding solid alloys which consist of AlAs, GaAs and InAs are assumed to be quasi-regular ternary solutions. The solidus and liquidus compositions are calculated at 1073 and 1173 K using the derived values of the partial components for the solid and liquid alloys at equilibrium. They are in good agreement with those of the experimentally determined values available in the literature. (C) 1999 Elsevier Science S.A. All rights reserved.
Electrical characterization of Ba(Zr0.1Ti0.9)O-3 thin films grown by pulsed laser ablation technique
Resumo:
In situ annealed thin films of ferroelectric Ba(Zr0.1Ti0.9)O-3 were deposited on platinum substrates by pulsed laser ablation technique. The as grown films were polycrystalline in nature without the evidence of any secondary phases. The polarization hysteresis loop confirmed the ferroelectricity, which was also cross-checked with the capacitance-voltage characteristics. The remnant polarization was about 5.9 muC cm(-2) at room temperature and the coercive field was 45 kV. There was a slight asymmetry in the hysteresis for different polarities, which was thought to be due to the work function differences of different electrodes. The dielectric constant was about 452 and was found to exhibit low frequency dispersion that increased with frequency, This was related to the space-charge polarization. The complex impedance was plotted and this exhibited a semicircular trace, and indicated an equivalent parallel R - C circuit within the sample. This was attributed to the grain response. The DC leakage current-voltage plot was consistent with the space-charge limited conduction theory, but showed some deviation, which was explained by assuming a Poole-Frenkel type conduction to be superimposed on to the usual space-charge controlled current. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Approximate deconvolution modeling is a very recent approach to large eddy simulation of turbulent flows. It has been applied to compressible flows with success. Here, a premixed flame which forms in the wake of a flameholder has been selected to examine the subgrid-scale modeling of reaction rate by this new method because a previous plane two-dimensional simulation of this wake flame, using a wrinkling function and artificial flame thickening, had revealed discrepancies when compared with experiment. The present simulation is of the temporal evolution of a round wakelike flow at two Reynolds numbers, Re = 2000 and 10,000, based on wake defect velocity and wake diameter. A Fourier-spectral code has been used. The reaction is single-step and irreversible, and the rate follows an Arrhenius law. The reference simulation at the lower Reynolds number is fully resolved. At Re = 10,000, subgrid-scale contributions are significant. It was found that subgrid-scale modeling in the present simulation agrees more closely with unresolved subgrid-scale effects observed in experiment. Specifically, the highest contributions appeared in thin folded regions created by vortex convection. The wrinkling function approach had not selected subgrid-scale effects in these regions.
Resumo:
A nonlinear model is developed to numerically simulate dynamic combustion inside a solid rocket motor chamber. Using this model, the phenomena of re-ignition and chuffing are investigated under low-L* conditions. The model consists of two separate submodels (coupled to each other), one for unsteady burning of propellant and the other for unsteady conservation of mass and energy within the chamber. The latter yields instantaneous pressure and temperature within the chamber. The instantaneous burning rate is calculated using a one-dimensional, nonlinear, transient gas-phase model previously developed by the authors. The results presented in this paper show that the model predicts not only the critical L*, but also the various regimes of L*-instabihty. Specifically, the results exhibit (1) amplifying pressure oscillations leading to extinction, and (2) re-ignition after a dormant period following extinction. The re-ignition could be observed only when a radiation heat flux (from the combustion chamber to the propellant surface) was included. Certain high-frequency oscillations, possibly due to intrinsic instability, are observed when the pressure overshoots during re-ignition. At very low values of initial L*, successive cycles of extinction/reignition displaying typical characteristics of chuffing are predicted. Variations of the chuffing frequency and the thickness of propellant burned off during a chuff with L* are found to be qualitatively the same as that reported from experimental observations.
Resumo:
A transient macroscopic model is developed for studying heat and mass transfer in a single-pass laser surface alloying process, with particular emphasis on non-equilibrium solidification considerations. The solution for species concentration distribution requires suitable treatment of non-equilibrium mass transfer conditions. In this context, microscopic features pertaining to non-equilibrium effects on account of solutal undercooling are incorporated through the formulation of a modified partition-coefficient. The effective partition-coefficient is numerically modeled by Means of a number of macroscopically observable parameters related to the solidifying domain. The numerical model is so developed that the modifications on account of non-equilibrium solidification considerations can be conveniently implemented in existing numerical codes based on equilibrium solidification considerations.
Resumo:
This paper reports reacting fluid dynamics calculations for an ammonium percholrate binder sandwich and extracts experimentally observed features including surface profiles and maximum regression rates as a function of pressure and binder thickness. These studies have been carried out by solving the two-dimensional unsteady Navier-Stokes equations with energy and species conservation equations and a kinetic model of three reaction steps (ammonium perchlorate decomposition flame, primary diffusion flame, and final diffusion flame) in the gas phase. The unsteady two-dimensional conduction equation is solved in the condensed phase. The regressing surface is unsteady and two dimensional. Computations have been carried out for a binder thickness range of 25-125 mum and a pressure range of 1.4 to 6.9 MPa. Good comparisons at several levels of detail are used to demonstrate the need for condensed-phase two-dimensional unsteady conduction and three-step gas-phase reactions. The choice of kinetic and thermodynamic parameters is crucial to good comparison with experiments. The choice of activation energy parameters for ammonium percholrate combustion has been made with stability of combustion in addition to experimentally determined values reported in literature. The choice of gas-phase parameters for the diffusion flames are made considering that (a) primary diffusion flame affects the low-pressure behavior and (b) final diffusion flame affects high-pressure behavior. The predictions include the low-pressure deflagration limit of the sandwich apart from others noted above. Finally, this study demonstrates the possibility of making meaningful comparisons with experimental observations on sandwich propellant combustion.
Resumo:
In this paper, a finite-element model is developed in which the nonlinear soil behavior is represented by a hyperbolic relation for static load condition and modified hyperbolic relation, which includes both degradation and gap for a cyclic load condition. Although batter piles are subjected to lateral load, the soil resistance is also governed by axial load, which is incorporated by considering the P-Δ moment and geometric stiffness matrix. By adopting the developed numerical model, static and cyclic load analyses are performed adopting an incremental-iterative procedure where the pile is idealized as beam elements and the soil as elastoplastic spring elements. The proposed numerical model is validated with published laboratory and field pile test results under both static and cyclic load conditions. This paper highlights the importance of the degradation factor and its influence on the soil resistance-displacement (p-y) curve, number of cycles of loading, and cyclic load response.
Resumo:
A cascaded system of electrical discharges (non-thermal plasma) and adsorption process was investigated for the removal of oxides of Nitrogen (NOx) and total hydrocarbons (THC) from an actual diesel engine exhaust. The non-thermal plasma and adsorption processes were separately studied first and then the cascaded process was studied. In this study, different types of adsorbents were used. The NOx removal efficiency was higher with plasma-associated adsorption (cascaded) process compared to the individual processes and the removal efficiency was found almost invariant in time. When associated by plasma, among the adsorbents studied, activated charcoal and MS-13X were more effective for NOx and THC removal respectively. The experiments were conducted at no load and at 50% load conditions. The plasma reactor was kept at room temperature throughout the experiment, while the temperature of the adsorbent reactor was varied. A relative comparison of adsorbents was discussed at the end.
Resumo:
BaTiO3 and Ba0.9Ca0.1TiO3 thin films were deposited on the p – type Si substrate by pulsed excimer laser ablation technique. The Capacitance – Voltage (C-V) measurement measured at 1 MHz exhibited a clockwise rotating hysteresis loop with a wide memory window for the Metal – Ferroelectric – Semiconductor (MFS) capacitor confirming the ferroelectric nature. The low frequency C – V measurements exhibited the response of the minority carriers in the inversion region while at 1 MHz the C – V is of a high frequency type with minimum capacitance in the inversion region. The interface states of both the MFS structures were calculated from the Castagne – Vaipaille method (High – low frequency C – V curve). Deep Level Transient Spectroscopy (DLTS) was used to analyze the interface traps and capture cross section present in the MFS capacitor. There were distinct peaks present in the DLTS spectrum and these peaks were attributed to the presence of the discrete interface states present at the semiconductor – ferroelectric interface. The distribution of calculated interface states were mapped with the silicon energy band gap for both the undoped and Ca doped BaTiO3 thin films using both the C – V and DLTS method. The interface states of the Ca doped BaTiO3 thin films were found to be higher than the pure BaTiO3 thin films.
Resumo:
An attempt has been made to study the film-substrate interface by using a sensitive, non- conventional tool. Because of the prospective use of gate oxide in MOSFET devices, we have chosen to study alumina films grown on silicon. Film-substrate interface of alumina grown by MOCVD on Si(100) was studied systematically using spectroscopic ellipsometry in the range 1.5-5.0 eV, supported by cross-sectional SEM, and SIMS. The (ε1,ε2) versus energy data obtained for films grown at 600°C, 700°C, and 750°C were modeled to fit a substrate/interface/film “sandwich”. The experimental results reveal (as may be expected) that the nature of the substrate -film interface depends strongly on the growth temperature. The simulated (ε1,ε2) patterns are in excellent agreement with observed ellipsometric data. The MOCVD precursors results the presence of carbon in the films. Theoretical simulation was able to account for the ellipsometry data by invoking the presence of “free” carbon in the alumina films.