943 resultados para Modal matching
Resumo:
We present modulation instability analysis including azimuthal perturbations of steady-state continuous wave (CW) propagation in multicore-fiber configurations with a central core. In systems with a central core, a steady CW evolution regime requires power-controlled phase matching, which offers interesting spatial-division applications. Our results have general applicability and are relevant to a range of physical and engineering systems, including high-power fiber lasers, optical transmission in multicore fiber, and systems of coupled nonlinear waveguides. © 2013 Optical Society of America.
Resumo:
Spatial objects may not only be perceived visually but also by touch. We report recent experiments investigating to what extent prior object knowledge acquired in either the haptic or visual sensory modality transfers to a subsequent visual learning task. Results indicate that even mental object representations learnt in one sensory modality may attain a multi-modal quality. These findings seem incompatible with picture-based reasoning schemas but leave open the possibility of modality-specific reasoning mechanisms.
Resumo:
Background: There is evidence showing that men and women differ with regard to the processing of emotional information. However, the mechanisms behind these differences are not fully understood. Method: The sample comprised of 275 (167 female) right-handed, healthy participants, recruited from the community. We employed a customized affective priming task, which consisted of three subtests, differing in the modality of the prime (face, written word, and sound). The targets were always written words of either positive or negative valence. The priming effect was measured as reaction time facilitation in conditions where both prime and target were emotional (of the same positive or negative valence) compared with conditions where the emotional targets were preceded by neutral primes. Results: The priming effect was observed across all three modalities, with an interaction of gender by valence: the priming effect in the emotionally negative condition in male participants was stronger compared with females. This was accounted for by the differential priming effect within the female group where priming was significantly smaller in the emotionally negative conditions compared with the positive conditions. The male participants revealed a comparable priming effect across both the emotionally negative and positive conditions. Conclusion: Reduced priming in negative conditions in women may reflect interference processes due to greater sensitivity to negative valence of stimuli. This in turn could underlie the gender-related differences in susceptibility to emotional disorders.
Resumo:
The "recursive" definition of Default Logic is shown to be representable in a monotonic Modal Quantificational Logic whose modal laws are stronger than S5. Specifically, it is proven that a set of sentences of First Order Logic is a fixed-point of the "recursive" fixed-point equation of Default Logic with an initial set of axioms and defaults if and only if the meaning of the fixed-point is logically equivalent to a particular modal functor of the meanings of that initial set of sentences and of the sentences in those defaults. This is important because the modal representation allows the use of powerful automatic deduction systems for Modal Logic and because unlike the original "recursive" definition of Default Logic, it is easily generalized to the case where quantified variables may be shared across the scope of the components of the defaults.
Resumo:
The nonmonotonic logic called Reflective Logic is shown to be representable in a monotonic Modal Quantificational Logic whose modal laws are stronger than S5. Specifically, it is proven that a set of sentences of First Order Logic is a fixed-point of the fixed-point equation of Reflective Logic with an initial set of axioms and defaults if and only if the meaning of that set of sentences is logically equivalent to a particular modal functor of the meanings of that initial set of sentences and of the sentences in those defaults. This result is important because the modal representation allows the use of powerful automatic deduction systems for Modal Logic and because unlike the original Reflective Logic, it is easily generalized to the case where quantified variables may be shared across the scope of the components of the defaults thus allowing such defaults to produce quantified consequences. Furthermore, this generalization properly treats such quantifiers since all the laws of First Order Logic hold and since both the Barcan Formula and its converse hold.
Resumo:
The nonmonotonic logic called Default Logic is shown to be representable in a monotonic Modal Quantificational Logic whose modal laws are stronger than S5. Specifically, it is proven that a set of sentences of First Order Logic is a fixed-point of the fixed-point equation of Default Logic with an initial set of axioms and defaults if and only if the meaning or rather disquotation of that set of sentences is logically equivalent to a particular modal functor of the meanings of that initial set of sentences and of the sentences in those defaults. This result is important because the modal representation allows the use of powerful automatic deduction systems for Modal Logic and because unlike the original Default Logic, it is easily generalized to the case where quantified variables may be shared across the scope of the components of the defaults thus allowing such defaults to produce quantified consequences. Furthermore, this generalization properly treats such quantifiers since both the Barcan Formula and its converse hold.
Resumo:
The nonmonotonic logic called Autoepistemic Logic is shown to be representable in a monotonic Modal Quantificational Logic whose modal laws are stronger than S5. Specifically, it is proven that a set of sentences of First Order Logic is a fixed-point of the fixed-point equation of Autoepistemic Logic with an initial set of axioms if and only if the meaning or rather disquotation of that set of sentences is logically equivalent to a particular modal functor of the meaning of that initial set of sentences. This result is important because the modal representation allows the use of powerful automatic deduction systems for Modal Logic and unlike the original Autoepistemic Logic, it is easily generalized to the case where quantified variables may be shared across the scope of modal expressions thus allowing the derivation of quantified consequences. Furthermore, this generalization properly treats such quantifiers since both the Barcan formula and its converse hold.
Resumo:
An optical in-fiber modal interferometer-based volume strain sensor for earthquake prediction is proposed and experimentally demonstrated. The sensing element is formed by wrapping a multimode-singlemode-multimode fiber structure onto a polyurethane hollow column. Due to the modal interference between the excited guided modes in the fiber, strong interference pattern could be observed in the transmission spectrum. Theoretical analysis verifies that the resonant wavelength shifts as a result of the volume strain variation caused by the column deformation with square root relationship. Sensitivity > 3.93 pm/με within the volume strain ranging from 0 to 1300 με is also experimentally demonstrated. By taking the response of bidirectional change of volume strain and the sluggish character of the employed sensing material into consideration, the sensing system presents good repeatability and stability. © 2001-2012 IEEE.
Resumo:
A novel approach of normal ECG recognition based on scale-space signal representation is proposed. The approach utilizes curvature scale-space signal representation used to match visual objects shapes previously and dynamic programming algorithm for matching CSS representations of ECG signals. Extraction and matching processes are fast and experimental results show that the approach is quite robust for preliminary normal ECG recognition.
Resumo:
Long period grating was UV inscribed into a multicore fiber consisting of 120 single mode cores. The multicore fiber that hosts the grating was fusion spliced into a single mode fiber at both ends. The splice creates a taper transition between the two types of fiber that produces a nonadiabatic mode evolution; this results in the illumination of all the modes in the multicore fiber. The spectral characteristics of this fiber device as a function of curvature were investigated. The device yielded a significant spectral sensitivity as high as 1.23 nm/m-1 and 3.57 dB/m-1 to the ultra-low curvature values from 0 to 1 m-1. This fiber device can also distinguish the orientation of curvature experienced by the fiber as the long period grating attenuation bands producing either a blue or red wavelength shift. The finite element method (FEM) model was used to investigate the modal behavior in multicore fiber and to predict the phase-matching curves of the long period grating inscribed into multicore fiber. © 2014 Optical Society of America.
Resumo:
In this paper, we propose a new edge-based matching kernel for graphs by using discrete-time quantum walks. To this end, we commence by transforming a graph into a directed line graph. The reasons of using the line graph structure are twofold. First, for a graph, its directed line graph is a dual representation and each vertex of the line graph represents a corresponding edge in the original graph. Second, we show that the discrete-time quantum walk can be seen as a walk on the line graph and the state space of the walk is the vertex set of the line graph, i.e., the state space of the walk is the edges of the original graph. As a result, the directed line graph provides an elegant way of developing new edge-based matching kernel based on discrete-time quantum walks. For a pair of graphs, we compute the h-layer depth-based representation for each vertex of their directed line graphs by computing entropic signatures (computed from discrete-time quantum walks on the line graphs) on the family of K-layer expansion subgraphs rooted at the vertex, i.e., we compute the depth-based representations for edges of the original graphs through their directed line graphs. Based on the new representations, we define an edge-based matching method for the pair of graphs by aligning the h-layer depth-based representations computed through the directed line graphs. The new edge-based matching kernel is thus computed by counting the number of matched vertices identified by the matching method on the directed line graphs. Experiments on standard graph datasets demonstrate the effectiveness of our new kernel.
Resumo:
Many Object recognition techniques perform some flavour of point pattern matching between a model and a scene. Such points are usually selected through a feature detection algorithm that is robust to a class of image transformations and a suitable descriptor is computed over them in order to get a reliable matching. Moreover, some approaches take an additional step by casting the correspondence problem into a matching between graphs defined over feature points. The motivation is that the relational model would add more discriminative power, however the overall effectiveness strongly depends on the ability to build a graph that is stable with respect to both changes in the object appearance and spatial distribution of interest points. In fact, widely used graph-based representations, have shown to suffer some limitations, especially with respect to changes in the Euclidean organization of the feature points. In this paper we introduce a technique to build relational structures over corner points that does not depend on the spatial distribution of the features. © 2012 ICPR Org Committee.
Resumo:
In this paper, we investigate the impact of inter-modal four-wave mixing on mode- and wavelength-division-multiplexing systems. A set of coupled nonlinear Schrödinger equations, including linear mode coupling, is derived allowing to isolate the inter-modal four-wave mixing terms. The efficiency of inter-modal four-wave mixing between degenerate LP modes is found to be significantly higher than the intra-modal four-wave mixing efficiency. However, it is shown that the inter-modal four-wave mixing efficiency between degenerate modes is significantly reduced by the linear mode coupling.
Resumo:
A simple fiber sensor capable of simultaneous measurement of liquid level and refractive index (RI) is proposed and experimentally demonstrated. The sensing head is an all-fiber modal interferometer manufactured by splicing an uncoated single-mode fiber with two short sections of multimode fiber. The interference pattern experiences blue shift along with an increase of axial strain and surrounding RI. Owing to the participation of multiple cladding modes with different sensitivities, the height and RI of the liquid could be simultaneously measured by monitoring two dips of the transmission spectrum. Experimental results show that the liquid level and RI sensitivities of the two dips are 245.7 pm/mm, -38 nm/RI unit (RIU), and 223.7 pm/mm, -62 nm/RIU, respectively. The approach has distinctive advantages of easy fabrication, low cost, and high sensitivity for liquid level detection with the capability of distinguishing the RI variation simultaneously. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
We have proposed a similarity matching method (SMM) to obtain the change of Brillouin frequency shift (BFS), in which the change of BFS can be determined from the frequency difference between detecting spectrum and selected reference spectrum by comparing their similarity. We have also compared three similarity measures in the simulation, which has shown that the correlation coefficient is more accurate to determine the change of BFS. Compared with the other methods of determining the change of BFS, the SMM is more suitable for complex Brillouin spectrum profiles. More precise result and much faster processing speed have been verified in our simulation and experiments. The experimental results have shown that the measurement uncertainty of the BFS has been improved to 0.72 MHz by using the SMM, which is almost one-third of that by using the curve fitting method, and the speed of deriving the BFS change by the SMM is 120 times faster than that by the curve fitting method.