957 resultados para Mitochondrial DNA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the evolution pattern and phylogenetic utility of duplicate control regions (CRs) in mitochondrial (mt) genomes, we sequenced the entire mt genomes of three Ixodes species and part of the mt genomes of another I I species. All the species from the Australasian lineage have duplicate CRs, whereas the other species have one CR. Sequence analyses indicate that the two CRs of the Australasian Ixodes ticks have evolved in concert in each species. In addition to the Australasian Ixodes ticks, species from seven other lineages of metazoa also have mt genomes with duplicate CRs. Accumulated mtDNA sequence data from these metazoans and two recent experiments on replication of mt genomes in human cell lines with duplicate CRs allowed us to re-examine four intriguing questions about the presence of duplicate CRs in the mt genomes of metazoa: (1) Why do some mt genomes, but not others, have duplicate CRs? (2) How did mt genomes with duplicate CRs evolve? (3) How could the nucleotide sequences of duplicate CRs remain identical or very similar over evolutionary time? (4) Are duplicate CRs phylogenetic markers? It appears that mt genomes with duplicate CRs have a selective advantage in replication over mt genomes with one CR. Tandem duplication followed by deletion of genes is the most plausible mechanism for the generation of mt genomes with duplicate CRs. Once duplicate CRs occur in an mt genome, they tend to evolve in concert, probably by gene conversion. However, there are lineages where gene conversion may not always occur, and, thus, the two CRs may evolve independently in these lineages. Duplicate CRs have much potential as phylogenetic markers at low taxonomic levels, such as within genera, within families, or among families, but not at high taxonomic levels, such as among orders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytophthora diseases cause major losses to agricultural and horticultural production in Australia and worldwide. Most Phytophthora diseases are soilborne and difficult to control, making disease prevention an important component of many disease management strategies. Detection and identification of the causal agent, therefore, is an essential part of effective disease management. This paper describes the development and validation of a DNA-based diagnostic assay that can detect and identify 27 different Phytophthora species. We have designed PCR primers that are specific to the genus Phytophthora. The resulting amplicon after PCR is subjected to digestion by restriction enzymes to yield a specific restriction pattern or fingerprint unique to each species. The restriction patterns are compared with a key comprising restriction patterns of type specimens or representative isolates of 27 different Phytophthora species. A number of fundamental issues, such as genetic diversity within and among species which underpin the development and validation of DNA-based diagnostic assays, are addressed in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The arrangement of genes in the mitochondrial (mt) genomes of most insects is the same, or near-identical, to that inferred to be ancestral for insects. We sequenced the entire mt genome of the small pigeon louse, Campanulotes bidentatus compar, and part of the mt genomes of nine other species of lice. These species were from six families and the three main suborders of the order Phthiraptera. There was no variation in gene arrangement among species within a family but there was much variation in gene arrangement among the three suborders of lice. There has been an extraordinary number of gene rearrangements in the mitochondrial genomes of lice!

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gene content of a mitochondrial (mt) genome, i.e., 37 genes and a large noncoding region (LNR), is usually conserved in Metazoa. The arrangement of these genes and the LNR is generally conserved at low taxonomic levels but varies substantially at high levels. We report here a variation in mt gene content and gene arrangement among chigger mites of the genus Leptotrombidium. We found previously that the mt genome of Leptotrombidium pallidum has an extra gene for large-subunit rRNA (rrnL), a pseudo-gene for small-subunit rRNA (PrrnS), and three extra LNRs, additional to the 37 genes and an LNR typical of Metazoa. Further, the arrangement of mt genes of L. pallidum differs drastically from that of the hypothetical ancestor of the arthropods. To find to what extent the novel gene content and gene arrangement occurred in Leptotrombidium, we sequenced the entire or partial mt genomes of three other species, L. akamushi, L. deliense, and L. fletcheri. These three species share the arrangement of all genes with L. pallidum, except trnQ (for tRNA-glutamine). Unlike L. pallidum, however, these three species do not have extra rrnL or PrrnS and have only one extra LNR. By comparison between Leptotrombidium species and the ancestor of the arthropods, we propose that (1) the type of mt genome present in L. pallidum evolved from the type present in the other three Leptotrombidium species, and (2) three molecular mechanisms were involved in the evolution of mt gene content and gene arrangement in Leptotrombidium species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fusarium oxysporum is a diverse, asexual fungal species composed of both saprophytic and pathogenic members. The destructive phytopathogens are classified into formae speciales based on the host species and into vegetative compatibility groups (VCGs) based on the ability of two individuals to form heterokaryons. Parasexuality, a non-sexual mode of genetic exchange unique to some fungi has been demonstrated in the laboratory in Fusarium oxysporum f. sp. cubense (FOC). The goals of this dissertation were threefold: to ascertain whether mitochondrial (mt) markers can distinguish race differences in FOC; to determine genetic relatedness of VCGs in FOC based on a mt marker; and to discover the mode of mt inheritance during a parasexual cycle.^ Band patterns produced by electrophoresis of Hae III digested genomic DNA indicated that VCG differences, not race, could be discerned by mtDNA analysis. Primers were designed to amplify a mt intergenic locus which served as a molecular marker to screen 55 strains of FOC in 16 VCGs using both single strand conformational polymorphism and DNA sequencing. Based on homogeneity of the locus, strains were assigned to seven mitotypes, a classification unit which I introduced and found informative for grouping related VCGs.^ To determine the mode of mt inheritance during a parasexual cycle, strains in different mitotypes were paired. Mitochondrial inheritance in all hybrid progeny was found to be uniparental. I speculated that if a parasexual cycle occurs in nature there would be greater variation in the nuclear genome than the mt. This could produce multiple VCGs within a mitotype, a phenomenon observed in FOC. Based on these data, I concluded that parasexuality in nature may contribute to the diversity observed in Fusarium oxysporum. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on our current knowledge about population genetics, phylogeography and speciation, we begin to understand that the deep sea harbours more species than suggested in the past. Deep-sea soft-sediment environment in particular hosts a diverse and highly endemic invertebrate fauna. Very little is known about evolutionary processes that generate this remarkable species richness, the genetic variability and spatial distribution of deep-sea animals. In this study, phylogeographic patterns and the genetic variability among eight populations of the abundant and widespread deep-sea isopod morphospecies Betamorpha fusiformis [Barnard, K.H., 1920. Contributions to the crustacean fauna of South Africa. 6. Further additions to the list of marine isopods. Annals of the South African Museum 17, 319-438] were examined. A fragment of the mitochondrial 16S rRNA gene of 50 specimens and the complete nuclear 18S rRNA gene of 7 specimens were sequenced. The molecular data reveal high levels of genetic variability of both genes between populations, giving evidence for distinct monophyletic groups of haplotypes with average p-distances ranging from 0.0470 to 0.1440 (d-distances: 0.0592-0.2850) of the 16S rDNA, and 18S rDNA p-distances ranging between 0.0032 and 0.0174 (d-distances: 0.0033-0.0195). Intermediate values are absent. Our results show that widely distributed benthic deep-sea organisms of a homogeneous phenotype can be differentiated into genetically highly divergent populations. Sympatry of some genotypes indicates the existence of cryptic speciation. Flocks of closely related but genetically distinct species probably exist in other widespread benthic deep-sea asellotes and other Peracarida. Based on existing data we hypothesize that many widespread morphospecies are complexes of cryptic biological species (patchwork hypothesis).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally, many small-sized copepod species are considered to be widespread, bipolar or cosmopolitan. However, these large-scale distribution patterns need to be re-examined in view of increasing evidence of cryptic and pseudo-cryptic speciation in pelagic copepods. Here, we present a phylogeographic study of Oithona similis s.l. populations from the Arctic Ocean, the Southern Ocean and its northern boundaries, the North Atlantic and the Mediterrranean Sea. O. similis s.l. is considered as one of the most abundant species in temperate to polar oceans and acts as an important link in the trophic network between the microbial loop and higher trophic levels such as fish larvae. Two gene fragments were analysed: the mitochondrial cytochrome oxidase c subunit I (COI), and the nuclear ribosomal 28S genetic marker. Seven distinct, geographically delimitated, mitochondrial lineages could be identified, with divergences among the lineages ranging from 8 to 24 %, thus representing most likely cryptic or pseudocryptic species within O. similis s.l. Four lineages were identified within or close to the borders of the Southern Ocean, one lineage in the Arctic Ocean and two lineages in the temperate Northern hemisphere. Surprisingly the Arctic lineage was more closely related to lineages from the Southern hemisphere than to the other lineages from the Northern hemisphere, suggesting that geographic proximity is a rather poor predictor of how closely related the clades are on a genetic level. Molecular clock application revealed that the evolutionary history of O. similis s.l. is possibly closely associated with the reorganization of the ocean circulation in the mid Miocene and may be an example of allopatric speciation in the pelagic zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schistosomiasis is a chronically debilitating helminth infection with a significant socio-economic and public health impact. Accurate diagnostics play a pivotal role in achieving current schistosomiasis control and elimination goals. However, many of the current diagnostic procedures, which rely on detection of schistosome eggs, have major limitations including lack of accuracy and the inability to detect pre-patent infections. DNA-based detection methods provide a viable alternative to the current tests commonly used for schistosomiasis diagnosis. Here we describe the optimisation of a novel droplet digital PCR (ddPCR) duplex assay for the diagnosis of Schistosoma japonicum infection which provides improved detection sensitivity and specificity. The assay involves the amplification of two specific and abundant target gene sequences in S. japonicum; a retrotransposon (SjR2) and a portion of a mitochondrial gene (nad1). The assay detected target sequences in different sources of schistosome DNA isolated from adult worms, schistosomules and eggs, and exhibits a high level of specificity, thereby representing an ideal tool for the detection of low levels of parasite DNA in different clinical samples including parasite cell free DNA in the host circulation and other bodily fluids. Moreover, being quantitative, the assay can be used to determine parasite infection intensity and, could provide an important tool for the detection of low intensity infections in low prevalence schistosomiasis-endemic areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mealybugs (Hemiptera: Pseudococcidae) are major pests of a wide range of crops and ornamental plants worldwide. Their high degree of morphological similarity makes them difficult to identify and limits their study and management. We aimed to identify a set of markers for the genetic characterization and identification of complexes of taxa in the Pseudococcidae. We surveyed and tested the genetic markers used in previous studies and then identified new markers for particularly relevant genomic regions for which no satisfactory markers were available. We tested all markers on a subset of four taxa distributed worldwide. Five markers were retained after this first screening: two regions of the mitochondrial cytochrome oxidase I gene, 28S-D2, the entire internal transcriber space 2 locus and the rpS15-16S region of the primary mealybug endosymbiont Tremblaya princeps. We then assessed the utility of these markers for the characterization and identification of 239 samples from 43 sites in France and Brazil. The five markers studied (i) successfully distinguished all species identified by morphological examination, (ii) disentangled complexes of species by revealing intraspecific genetic variation and identified a set of closely related taxa for which taxonomic status requires clarification through further studies, and (iii) facilitated the inference of phylogenetic relationships between the characterized taxa.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infection of plant cells by potyviruses induces the formation of cytoplasmic inclusions ranging in size from 200 to 1000 nm. To determine if the ability to form these ordered, insoluble structures is intrinsic to the potyviral cytoplasmic inclusion protein, we have expressed the cytoplasmic inclusion protein from Potato virus Y in tobacco under the control of the chrysanthemum ribulose-1,5-bisphosphate carboxylase small subunit promoter, a highly active, green tissue promoter. No cytoplasmic inclusions were observed in the leaves of transgenic tobacco using transmission electron microscopy, despite being able to clearly visualize these inclusions in Potato virus Y infected tobacco leaves under the same conditions. However, we did observe a wide range of tissue and sub-cellular abnormalities associated with the expression of the Potato virus Y cytoplasmic inclusion protein. These changes included the disruption of normal cell morphology and organization in leaves, mitochondrial and chloroplast internal reorganization, and the formation of atypical lipid accumulations. Despite these significant structural changes, however, transgenic tobacco plants were viable and the results are discussed in the context of potyviral cytoplasmic inclusion protein function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic membranes were fabricated by in situ synthesis of alumina nanofibres in the pores of an alumina support as a separation layer, and exhibited a high permeation selectivity for bovine serum albumin relative to bovine hemoglobin (over 60 times) and can effectively retain DNA molecules at high fluxes.