944 resultados para Minerals in animal nutrition.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The search for novel compounds of marine origin has increased in the last decades for their application in various areas such as pharmaceutical, human or animal nutrition, cosmetics or bioenergy. In this context of blue technology development, microalgae are of particular interest due to their immense biodiversity and their relatively simple growth needs. In this review, we discuss about the promising use of microalgae and microalgal compounds as sources of natural antibiotics against human pathogens but also about their potential to limit microbial infections in aquaculture. An alternative to conventional antibiotics is needed as the microbial resistance to these drugs is increasing in humans and animals. Furthermore, using natural antibiotics for livestock could meet the consumer demand to avoid chemicals in food, would support a sustainable aquaculture and present the advantage of being environmentally friendly. Using natural and renewable microalgal compounds is still in its early days, but considering the important research development and rapid improvement in culture, extraction and purification processes, the valorization of microalgae will surely extend in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overall objective of this thesis was to study the effects of regular and high (super-) doses of phytase in the gut of broilers, with the aim of documenting the mechanism of their action leading to improvements in animal health. Phytase is often supplemented to commercial broiler diets to facilitate the hydrolysis of plant phytate and release of phosphorus for utilisation. Although not the original intention of its addition, phytase supplementation leads to improvements in growth performance parameters and enhanced nutrient utilisation. Further benefits have also been observed following the addition of super-doses of phytase which are not explained by an increase in phosphorus release, and thus have been termed ‘extra-phosphoric effects’. Using diets formulated to be adequate or marginally deficient in available phosphorus (aP; forming the negative control, NC), phytase was supplemented at 1,500 and 3,000 FTU/kg phytase in the first study (both super-doses) and the partitioning of nutrients within the body was investigated. It appeared that there were some metabolic changes between 1,500 and 3,000 FTU/kg, switching between protein and fat accretion, potentially as a consequence of nutrient availability, although these changes were not reflected by changes in growth performance parameters. However, the loss of the NC treatment without phytase on day 12 limits the comparison of the phytase within the NC treatment, but does allow for comparison of each dose at adequate or low dietary aP levels. As expected, a greater degree of phytate hydrolysis was achieved with 3,000 than with 1,500 FTU/kg phytase, but changes in carcass accretion characteristics were greater with 1,500 than 3,000 FTU/kg. Using these findings and the observation that there were no further changes in the parameters measured by increasing phytase from 1,500 to 3,000 FTU/kg (aside from phytate hydrolysis), 1,500 FTU/kg phytase was selected as the super-dose to be used in subsequent studies. The next study considered the influence of regular (500 FTU/kg) and super doses (1,500 FTU/kg) of phytase from within the gut. Overall, it was observed that changes were occurring to the gut environment, which ultimately would influence the absorptive capacity and conditions for further phytate hydrolysis. Dietary treatment influenced gut conditions such as pH, intestinal morphology and bacterial populations which can subsequently influence nutrient utilisation and potential for growth. The subsequent study was designed to investigate the effects within the gut in more detail. The release of nutrients from phytate hydrolysis and their bioavailability within the digesta can influence conditions within intestine, facilitating enhanced absorption. One of the parameters investigated was the expression of genes involved in the transport of nutrients in the intestine. Overall, there were few significant dietary treatment influences on gene expression in the intestine, however there was a dose-dependent response of phytase on the expression of the jejunual divalent mineral transporter. This indicates a change in divalent mineral bioavailability in the intestine, with correlations with inositol phosphate esters (IPs) being identified. This is likely explained by the IPs produced by phytase hydrolysis and accumulating in the digesta, differing between regular and high doses of phytase. It became apparent that interactions between the products of phytate hydrolysis (IP3, IP4) and minerals in the digesta had the potential to influence the gut environment and subsequent nutrient bioavailability and overall phytase action. The final study was designed to increase the content of the IPs, and investigate the influence of phytase under these conditions. As the complete hydrolysis of phytate to myo-inositol has been reported to be beneficial due to its proposed insulin mimetic effects, myo-inositol was also supplemented to one of the diets to see if any further benefits would be observed when supplemented alongside super-doses of phytase. Neither increased concentrations of the higher IP esters (IP6, IP5 and IP4) nor myo-inositol (myo-) had any effect on broiler growth performance, however there were still apparent beneficial influences of phytase supplementation. The results suggest considerable and important interactions between minerals and IP esters within the digesta, which ultimately have the potential to influence gut conditions and thus nutrient utilisation and growth performance. Reduced concentrations of blood glucose in the high IP ester diet with additional phytase supplementation suggest some insulin-like effects of myo- production. Additionally, the lack of effect of myo- supplementation on blood glucose and insulin concentrations suggests a difference between the structure of phytase-produced myo- and supplemented myo-. Although there were no improvements in growth performance by increasing phytase from 500 to 1,500 FTU/kg, there were changes occurring at the level of the gut and expression of genes in the intestine, influencing nutrient utilisation and the partitioning of nutrients within the body. There are many factors to be considered when supplementing phytase, with dietary nutrient content and nutrient release and IP production during phytate hydrolysis having an influence on phytase action, nutrient absorption and conditions within the gut. Super-doses of phytase may be beneficial for maintaining optimal gut conditions, clearing IP esters from the digesta, reducing their potential to form complexes with minerals and other nutrients, ultimately influencing the efficiency of production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Alentejano pig is an autochthonous breed scarcely selected, that due to its high trend for fat deposition present poorer meat yields than modern commercial breeds. However, its higher contents of intramuscular fat (IMF) increase pork sensory attributes and consumers’ acceptability. Animal cells can obtain fatty acids (FA) from three distinct pathways: diet ingested fats, lipolysis of stored lipids in cells and through de novo synthesis. Betaine has been used as a dietary supplement in pig nutrition to reduce fat deposition and increase lean muscle mass with inconsistent results so far. This study compares the expression of genes involved in lipid metabolism from pigs consuming a control diet, and the control diet supplemented with betaine (WB). The expression of two genes involved in lipogenesis and lipolysis were evaluated in L. lumborum and B. femoris: ACC, which mediates the carboxylation of acetyl CoA into malonyl CoA concluding the first step of de novo synthesis, and MCPT1 which is responsible for the transport of acyl groups into the mitochondria for the start of β-oxidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the scored Patient-generated Subjective Global Assessment (PG-SGA) tool as an outcome measure in clinical nutrition practice and determine its association with quality of life (QoL). DESIGN: A prospective 4 week study assessing the nutritional status and QoL of ambulatory patients receiving radiation therapy to the head, neck, rectal or abdominal area. SETTING: Australian radiation oncology facilities. SUBJECTS: Sixty cancer patients aged 24-85 y. INTERVENTION: Scored PG-SGA questionnaire, subjective global assessment (SGA), QoL (EORTC QLQ-C30 version 3). RESULTS: According to SGA, 65.0% (39) of subjects were well-nourished, 28.3% (17) moderately or suspected of being malnourished and 6.7% (4) severely malnourished. PG-SGA score and global QoL were correlated (r=-0.66, P<0.001) at baseline. There was a decrease in nutritional status according to PG-SGA score (P<0.001) and SGA (P<0.001); and a decrease in global QoL (P<0.001) after 4 weeks of radiotherapy. There was a linear trend for change in PG-SGA score (P<0.001) and change in global QoL (P=0.003) between those patients who improved (5%) maintained (56.7%) or deteriorated (33.3%) in nutritional status according to SGA. There was a correlation between change in PG-SGA score and change in QoL after 4 weeks of radiotherapy (r=-0.55, P<0.001). Regression analysis determined that 26% of the variation of change in QoL was explained by change in PG-SGA (P=0.001). CONCLUSION: The scored PG-SGA is a nutrition assessment tool that identifies malnutrition in ambulatory oncology patients receiving radiotherapy and can be used to predict the magnitude of change in QoL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While spatial determinants of emmetropization have been examined extensively in animal models and spatial processing of human myopes has also been studied, there have been few studies investigating temporal aspects of emmetropization and temporal processing in human myopia. The influence of temporal light modulation on eye growth and refractive compensation has been observed in animal models and there is evidence of temporal visual processing deficits in individuals with high myopia or other pathologies. Given this, the aims of this work were to examine the relationships between myopia (i.e. degree of myopia and progression status) and temporal visual performance and to consider any temporal processing deficits in terms of the parallel retinocortical pathways. Three psychophysical studies investigating temporal processing performance were conducted in young adult myopes and non-myopes: (1) backward visual masking, (2) dot motion perception and (3) phantom contour. For each experiment there were approximately 30 young emmetropes, 30 low myopes (myopia less than 5 D) and 30 high myopes (5 to 12 D). In the backward visual masking experiment, myopes were also classified according to their progression status (30 stable myopes and 30 progressing myopes). The first study was based on the observation that the visibility of a target is reduced by a second target, termed the mask, presented quickly after the first target. Myopes were more affected by the mask when the task was biased towards the magnocellular pathway; myopes had a 25% mean reduction in performance compared with emmetropes. However, there was no difference in the effect of the mask when the task was biased towards the parvocellular system. For all test conditions, there was no significant correlation between backward visual masking task performance and either the degree of myopia or myopia progression status. The dot motion perception study measured detection thresholds for the minimum displacement of moving dots, the maximum displacement of moving dots and degree of motion coherence required to correctly determine the direction of motion. The visual processing of these tasks is dominated by the magnocellular pathway. Compared with emmetropes, high myopes had reduced ability to detect the minimum displacement of moving dots for stimuli presented at the fovea (20% higher mean threshold) and possibly at the inferior nasal retina. The minimum displacement threshold was significantly and positively correlated to myopia magnitude and axial length, and significantly and negatively correlated with retinal thickness for the inferior nasal retina. The performance of emmetropes and myopes for all the other dot motion perception tasks were similar. In the phantom contour study, the highest temporal frequency of the flickering phantom pattern at which the contour was visible was determined. Myopes had significantly lower flicker detection limits (21.8 ± 7.1 Hz) than emmetropes (25.6 ± 8.8 Hz) for tasks biased towards the magnocellular pathway for both high (99%) and low (5%) contrast stimuli. There was no difference in flicker limits for a phantom contour task biased towards the parvocellular pathway. For all phantom contour tasks, there was no significant correlation between flicker detection thresholds and magnitude of myopia. Of the psychophysical temporal tasks studied here those primarily involving processing by the magnocellular pathway revealed differences in performance of the refractive error groups. While there are a number of interpretations for this data, this suggests that there may be a temporal processing deficit in some myopes that is selective for the magnocellular system. The minimum displacement dot motion perception task appears the most sensitive test, of those studied, for investigating changes in visual temporal processing in myopia. Data from the visual masking and phantom contour tasks suggest that the alterations to temporal processing occur at an early stage of myopia development. In addition, the link between increased minimum displacement threshold and decreasing retinal thickness suggests that there is a retinal component to the observed modifications in temporal processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although many different materials, techniques and methods, including artificial or engineered bone substitutes, have been used to repair various bone defects, the restoration of critical-sized bone defects caused by trauma, surgery or congenital malformation is still a great challenge to orthopedic surgeons. One important fact that has been neglected in the pursuit of resolutions for large bone defect healing is that most physiological bone defect healing needs the periosteum and stripping off the periosteum may result in non-union or non-healed bone defects. Periosteum plays very important roles not only in bone development but also in bone defect healing. The purpose of this project was to construct a functional periosteum in vitro using a single stem cell source and then test its ability to aid the repair of critical-sized bone defect in animal models. This project was designed with three separate but closely-linked parts which in the end led to four independent papers. The first part of this study investigated the structural and cellular features in periostea from diaphyseal and metaphyseal bone surfaces in rats of different ages or with osteoporosis. Histological and immunohistological methods were used in this part of the study. Results revealed that the structure and cell populations in periosteum are both age-related and site-specific. The diaphyseal periosteum showed age-related degeneration, whereas the metaphyseal periosteum is more destructive in older aged rats. The periosteum from osteoporotic bones differs from normal bones both in terms of structure and cell populations. This is especially evident in the cambial layer of the metaphyseal area. Bone resorption appears to be more active in the periosteum from osteoporotic bones, whereas bone formation activity is comparable between the osteoporotic and normal bone. The dysregulation of bone resorption and formation in the periosteum may also be the effect of the interaction between various neural pathways and the cell populations residing within it. One of the most important aspects in periosteum engineering is how to introduce new blood vessels into the engineered periosteum to help form vascularized bone tissues in bone defect areas. The second part of this study was designed to investigate the possibility of differentiating bone marrow stromal cells (BMSCs) into the endothelial cells and using them to construct vascularized periosteum. The endothelial cell differentiation of BMSCs was induced in pro-angiogenic media under both normoxia and CoCl2 (hypoxia-mimicking agent)-induced hypoxia conditions. The VEGF/PEDF expression pattern, endothelial cell specific marker expression, in vitro and in vivo vascularization ability of BMSCs cultured in different situations were assessed. Results revealed that BMSCs most likely cannot be differentiated into endothelial cells through the application of pro-angiogenic growth factors or by culturing under CoCl2-induced hypoxic conditions. However, they may be involved in angiogenesis as regulators under both normoxia and hypoxia conditions. Two major angiogenesis-related growth factors, VEGF (pro-angiogenic) and PEDF (anti-angiogenic) were found to have altered their expressions in accordance with the extracellular environment. BMSCs treated with the hypoxia-mimicking agent CoCl2 expressed more VEGF and less PEDF and enhanced the vascularization of subcutaneous implants in vivo. Based on the findings of the second part, the CoCl2 pre-treated BMSCs were used to construct periosteum, and the in vivo vascularization and osteogenesis of the constructed periosteum were assessed in the third part of this project. The findings of the third part revealed that BMSCs pre-treated with CoCl2 could enhance both ectopic and orthotopic osteogenesis of BMSCs-derived osteoblasts and vascularization at the early osteogenic stage, and the endothelial cells (HUVECs), which were used as positive control, were only capable of promoting osteogenesis after four-weeks. The subcutaneous area of the mouse is most likely inappropriate for assessing new bone formation on collagen scaffolds. This study demonstrated the potential application of CoCl2 pre-treated BMSCs in the tissue engineering not only for periosteum but also bone or other vascularized tissues. In summary, the structure and cell populations in periosteum are age-related, site-specific and closely linked with bone health status. BMSCs as a stem cell source for periosteum engineering are not endothelial cell progenitors but regulators, and CoCl2-treated BMSCs expressed more VEGF and less PEDF. These CoCl2-treated BMSCs enhanced both vascularization and osteogenesis in constructed periosteum transplanted in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heart failure is a complex disorder, characterized by activation of the sympathetic nervous system, leading to dysregulated Ca2+ homeostasis in cardiac myocytes and tissue remodeling. In a variety of diseases, cardiac malfunction is associated with aberrant fluxes of Ca2+ across both the surface membrane and the internal Ca2+ store, the sarcoplasmic reticulum (SR). One prominent hypothesis residues is that in heart failure, the activity of the ryanodine receptor (RyR2) Ca2+ release channel in the SR is increased due to excess phosphorylation and that this contributes to excess SR Ca2+ leak in diastole, reduced SR Ca2+ load and decreased contractility (Huke & Bers, 2008). There is controversy over which serine residues in RyR2 are hyperphosphorylated in animal models of heart failure and whether this is via the CaMKII or the PKA-linked signaling pathway. S2808, S2814 and S2030 in RyR2 have been variously claimed to be hyperphosphorylated. Our aim was to examine the degree of phosphorylation of these residues in RyR2 from failing human hearts. The use of human tissue was approved by the Human Research Ethics Committee, The Prince Charles Hospital, EC28114. Left ventricular tissue samples were obtained from an explanted heart of a patient with endstage heart failure (Emery Dreifuss Muscular Dystrophy with cardiomyopathy) and non-failing tissue was from a patient with cystic fibrosis undergoing heart-lung transplantation with no history of heart disease. SR vesicles were prepared as described by Laver et al. (1995) and examined with SDS-Page and Western Blot. Transferred proteins were probed with antibodies to detect total protein phosphorylation, phosphorylation of RyR2 serine residues S2808, S2814, S2030 and for the key proteins calsequestrin, triadin, junctin and FKBP12.6. To avoid membrane stripping artifact, each membrane was exposed to one phosphorylation-specific antibody and signal densities quantified using Bio-Rad Quantity One software. We found no distinguishable difference between failing and healthy hearts in the protein expression levels of RyR2, triadin, junctin or calsequestrin. We found an expected upregulation of total RyR2 phosphorylation in the failing heart sample, compared to a matched amount of RyR2 (quantified using densiometry) in healthy heart. Probing with antibodies detecting only the phosphorylated form of the specific RyR2 residues showed that the increase in total RyR2 phosphorylation in the failing heart was due to hyperphosphorylation of S2808 and S2814. We found that S2030 phosphorylation levels were unchanged in human heart failure. Interestingly, we found that S2030 has a basal level of phosphorylation in the healthy human heart, different from the absence of basal phosphorylation recently reported in rodent heart (Huke & Bers, 2008). Finally, preliminary results indicate that less FKBP 12.6 is associated with RyR2 in the failing heart, possibly as a consequence of PKA activation. In conclusion, residues S2808 and S2814 are hyperphosphorylated in human heart failure, presumably due to upregulation of the CaMKII and/or PKA signaling pathway as a result of chronic activation of the sympathetic nervous system. Such changes in RyR2 phosphorylation are believed to contribute to the leaky RyR2 phenotype associated with heart failure, which increases the incidence of arrhythmia and contributes to the severely impaired contractile performance of the failing heart. Huke S & Bers DM. (2008). Ryanodine receptor phosphorylation at serine 2030, 2808 and 2814 in rat cardiomyocytes. Biochemical and Biophysical Research Communications 376, 80-85. Laver DR, Roden LD, Ahern GP, Eager KR, Junankar PR & Dulhunty AF. (1995). Cytoplasmic Ca2+ inhibits the ryanodine receptor from cardiac muscle. Journal of Membrane Biology 147, 7-22. Proceedings

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the ground-water flow problem associated with the injection and recovery of certain corrosive fluids into mineral bearing rock. The aim is to dissolve the minerals in situ, and then recover them in solution. In general, it is not possible to recover all the injected fluid, which is of concern economically and environmentally. However, a new strategy is proposed here, that allows all the leaching fluid to be recovered. A mathematical model of the situation is solved approximately using an asymptotic solution, and exactly using a boundary integral approach. Solutions are shown for two-dimensional flow, which is of some practical interest as it is achievable in old mine tunnels, for example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of reports have demonstrated the importance of the CUB domaincontaining protein 1 (CDCP1) in facilitating cancer progression in animal models and the potential of this protein as a prognostic marker in several malignancies. CDCP1 facilitates metastasis formation in animal models by negatively regulating anoikis, a type of apoptosis triggered by the loss of attachment signalling from cell-cell contacts or cell-extra cellular matrix (ECM) contacts. Due to the important role CDCP1 plays in cancer progression in model systems, it is considered a potential drug target to prevent the metastatic spread of cancers. CDCP1 is a highly glycosylated 836 amino acid cell surface protein. It has structural features potentially facilitating protein-protein interactions including 14 N-glycosylation sites, three CUB-like domains, 20 cysteine residues likely to be involved in disulfide bond formation and five intracellular tyrosine residues. CDCP1 interacts with a variety of proteins including Src family kinases (SFKs) and protein kinase C ä (PKCä). Efforts to understand the mechanisms regulating these interactions have largely focussed on three CDCP1 tyrosine residues Y734, Y743 and Y762. CDCP1-Y734 is the site where SFKs phosphorylate and bind to CDCP1 and mediate subsequent phosphorylation of CDCP1-Y743 and -Y762 which leads to binding of PKCä at CDCP1-Y762. The resulting trimeric protein complex of SFK•CDCP1•PKCä has been proposed to mediate an anti-apoptotic cell phenotype in vitro, and to promote metastasis in vivo. The effect of mutation of the three tyrosines on interactions of CDCP1 with SFKs and PKCä and the consequences on cell phenotype in vitro and in vivo have not been examined. CDCP1 has a predicted molecular weight of ~90 kDa but is usually detected as a protein which migrates at ~135 kDa by Western blot analysis due to its high degree of glycosylation. A low molecular weight form of CDCP1 (LMWCDCP1) of ~70 kDa has been found in a variety of cancer cell lines. The mechanisms leading to the generation of LMW-CDCP1 in vivo are not well understood but an involvement of proteases in this process has been proposed. Serine proteases including plasmin and trypsin are able to proteolytically process CDCP1. In addition, the recombinant protease domain of the serine protease matriptase is also able to cleave the recombinant extracellular portion of CDCP1. Whether matriptase is able to proteolytically process CDCP1 on the cell surface has not been examined. Importantly, proteolytic processing of CDCP1 by trypsin leads to phosphorylation of its cell surface-retained portion which suggests that this event leads to initiation of an intracellular signalling cascade. This project aimed to further examine the biology of CDCP1 with a main of focus on exploring the roles played by CDCP1 tyrosine residues. To achieve this HeLa cells stably expressing CDCP1 or the CDCP1 tyrosine mutants Y734F, Y743F and Y762F were generated. These cell lines were used to examine: • The roles of the tyrosine residues Y734, Y743 and Y762 in mediating interactions of CDCP1 with binding proteins and to examine the effect of the stable expression on HeLa cell morphology. • The ability of the serine protease matriptase to proteolytically process cell surface CDCP1 and to examine the consequences of this event on HeLa cell phenotype and cell signalling in vitro. • The importance of these residues in processes associated with cancer progression in vitro including adhesion, proliferation and migration. • The role of these residues on metastatic phenotype in vivo and the ability of a function-blocking anti-CDCP1 antibody to inhibit metastasis in the chicken embryo chorioallantoic membrane (CAM) assay. Interestingly, biochemical experiments carried out in this study revealed that mutation of certain CDCP1 tyrosine residues impacts on interactions of this protein with binding proteins. For example, binding of SFKs as well as PKCä to CDCP1 was markedly decreased in HeLa-CDCP1-Y734F cells, and binding of PKCä was also reduced in HeLa-CDCP1-Y762F cells. In contrast, HeLa-CDCP1-Y743F cells did not display altered interactions with CDCP1 binding proteins. Importantly, observed differences in interactions of CDCP1 with binding partners impacted on basal phosphorylation of CDCP1. It was found that HeLa-CDCP1, HeLa-CDCP1-Y743F and -Y762F displayed strong basal levels of CDCP1 phosphorylation. In contrast, HeLa-CDCP1-Y734F cells did not display CDCP1 phosphorylation but exhibited constitutive phosphorylation of focal adhesion kinase (FAK) at tyrosine 861. Significantly, subsequent investigations to examine this observation suggested that CDCP1-Y734 and FAK-Y861 are competitive substrates for SFK-mediated phosphorylation. It appeared that SFK-mediated phosphorylation of CDCP1- Y734 and FAK-Y861 is an equilibrium which shifts depending on the level of CDCP1 expression in HeLa cells. This suggests that the level of CDCP1 expression may act as a regulatory mechanism allowing cells to switch from a FAK-Y861 mediated pathway to a CDCP1-Y734 mediated pathway. This is the first time that a link between SFKs, CDCP1 and FAK has been demonstrated. One of the most interesting observations from this work was that CDCP1 altered HeLa cell morphology causing an elongated and fibroblastic-like appearance. Importantly, this morphological change depended on CDCP1- Y734. In addition, it was observed that this change in cell morphology was accompanied by increased phosphorylation of SFK-Y416. This suggests that interactions of SFKs with CDCP1-Y734 increases SFK activity since SFKY416 is critical in regulating kinase activity of these proteins. The essential role of SFKs in mediating CDCP1-induced HeLa cell morphological changes was demonstrated using the SFK-selective inhibitor SU6656. This inhibitor caused reversion of HeLa-CDCP1 cell morphology to an epithelial appearance characteristic of HeLa-vector cells. Significantly, in vitro studies revealed that certain CDCP1-mediated cell phenotypes are mediated by cellular pathways dependent on CDCP1 tyrosine residues whereas others are independent of these sites. For example, CDCP1 expression caused a marked increase in HeLa cell motility that was independent of CDCP1 tyrosine residues. In contrast, CDCP1- induced decrease in HeLa cell proliferation was most prominent in HeLa- CDCP1-Y762F cells, potentially indicating a role for this site in regulating proliferation in HeLa cells. Another cellular event which was identified to require phosphorylation of a particular CDCP1 tyrosine residue is adhesion to fibronectin. It was observed that the CDCP1-mediated strong decrease in adhesion to fibronectin is mostly restored in HeLa-CDCP1-Y743F cells. This suggests a possible role for CDCP1-Y743 in causing a CDCP1-mediated decrease in adhesion. Data from in vivo experiments indicated that HeLa-CDCP1-Y734F cells are more metastic than HeLa-CDCP1 cells in vivo. This indicates that interaction of CDCP1 with SFKs and PKCä may not be required for CDCP1-mediated metastasis formation of HeLa cells in vivo. The metastatic phenotype of these cells may be caused by signalling involving FAK since HeLa-CDCP1- Y734F cells are the only CDCP1 expressing cells displaying constitutive phosphorylation of FAK-Y861. HeLa-CDCP1-Y762F cells displayed a very low metastatic ability which suggests that this CDCP1 tyrosine residue is important in mediating a pro-metastatic phenotype in HeLa cells. More detailed exploration of cellular events occurring downstream of CDCP1-Y734 and -Y762 may provide important insights into the mechanisms altering the metastatic ability of CDCP1 expressing HeLa cells. Complementing the in vivo studies, anti-CDCP1 antibodies were employed to assess whether these antibodies are able to inhibit metastasis of CDCP1 and CDCP1 tyrosine mutants expressing HeLa cells. It was found that HeLa- CDCP1-Y734F cells were the only cell line which was markedly reduced in the ability to metastasise. In contrast, the ability of HeLa-CDCP1, HeLa- CDCP1-Y743F and -Y762F cells to metastasise in vivo was not inhibited. These data suggest a possible role of interactions of CDCP1 with SFKs, occurring at CDCP1-Y734, in preventing an anti-metastatic effect of anti- CDCP1 antibodies in vivo. The proposal that SFKs may play a role in regulating anti-metastatic effects of anti-CDCP1 antibodies was supported by another experiment where differences between HeLa-CDCP1 cells and CDCP1 expressing HeLa cells (HeLa-CDCP1-S) from collaborators at the Scripps Research Institute were examined. It was found that HeLa-CDCP1-S cells express different SFKs than CDCP1 expressing HeLa cells generated for this study. This is important since HeLa-CDCP1-S cells can be inhibited in their metastatic ability using anti-CDCP1 antibodies in vivo. Importantly, these data suggest that further examinations of the roles of SFKs in facilitating anti-metastatic effects of anti-CDCP1 antibodies may give insights into how CDCP1 can be blocked to prevent metastasis in vivo. This project also explored the ability of the serine protease matriptase to proteolytically process cell surface localised CDCP1 because it is unknown whether matriptase can cleave cell surface CDCP1 as it has been reported for other proteases such as trypsin and plasmin. Furthermore, the consequences of matriptase-mediated proteolysis on cell phenotype in vitro and cell signalling were examined since recent reports suggested that proteolysis of CDCP1 leads to its phosphorylation and may initiate cell signalling and consequently alter cell phenotype. It was found that matriptase is able to proteolytically process cell surface CDCP1 at low nanomolar concentrations which suggests that cleavage of CDCP1 by matriptase may facilitate the generation of LWM-CDCP1 in vivo. To examine whether matriptase-mediated proteolysis induced cell signalling anti-phospho Erk 1/2 Western blot analysis was performed as this pathway has previously been examined to study signalling in response to proteolytic processing of cell surface proteins. It was found that matriptase-mediated proteolysis in CDCP1 expressing HeLa cells initiated intracellular signalling via Erk 1/2. Interestingly, this increase in phosphorylation of Erk 1/2 was also observed in HeLa-vector cells. This suggested that initiation of cell signalling via Erk 1/2 phosphorylation as a result of matriptase-mediated proteolysis occurs by pathways independent of CDCP1. Subsequent investigations measuring the flux of free calcium ions and by using a protease-activated receptor 2 (PAR2) agonist peptide confirmed this hypothesis. These data suggested that matriptase-mediated proteolysis results in cell signalling via a pathway induced by the activation of PAR2 rather than by CDCP1. This indicates that induction of cell signalling in HeLa cells as a consequence of matriptase-mediated proteolysis occurs via signalling pathways which do not involve phosphorylation of Erk 1/2. Consequently, it appears that future attempts should focus on the examination of cellular pathways other than Erk 1/2 to elucidate cell signalling initiated by matriptase-mediated proteolytic processing of CDCP1. The data presented in this thesis has explored in vitro and in vivo aspects of the biology of CDCP1. The observations summarised above will permit the design of future studies to more precisely determine the role of CDCP1 and its binding partners in processes relevant to cancer progression. This may contribute to further defining CDCP1 as a target for cancer treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nutrition interventions in the form of both self-management education and individualised diet therapy are considered essential for the long-term management of type 2 diabetes mellitus (T2DM). The measurement of diet is essential to inform, support and evaluate nutrition interventions in the management of T2DM. Barriers inherent within health care settings and systems limit ongoing access to personnel and resources, while traditional prospective methods of assessing diet are burdensome for the individual and often result in changes in typical intake to facilitate recording. This thesis investigated the inclusion of information and communication technologies (ICT) to overcome limitations to current approaches in the nutritional management of T2DM, in particular the development, trial and evaluation of the Nutricam dietary assessment method (NuDAM) consisting of a mobile phone photo/voice application to assess nutrient intake in a free-living environment with older adults with T2DM. Study 1: Effectiveness of an automated telephone system in promoting change in dietary intake among adults with T2DM The effectiveness of an automated telephone system, Telephone-Linked Care (TLC) Diabetes, designed to deliver self-management education was evaluated in terms of promoting dietary change in adults with T2DM and sub-optimal glycaemic control. In this secondary data analysis independent of the larger randomised controlled trial, complete data was available for 95 adults (59 male; mean age(±SD)=56.8±8.1 years; mean(±SD)BMI=34.2±7.0kg/m2). The treatment effect showed a reduction in total fat of 1.4% and saturated fat of 0.9% energy intake, body weight of 0.7 kg and waist circumference of 2.0 cm. In addition, a significant increase in the nutrition self-efficacy score of 1.3 (p<0.05) was observed in the TLC group compared to the control group. The modest trends observed in this study indicate that the TLC Diabetes system does support the adoption of positive nutrition behaviours as a result of diabetes self-management education, however caution must be applied in the interpretation of results due to the inherent limitations of the dietary assessment method used. The decision to use a close-list FFQ with known bias may have influenced the accuracy of reporting dietary intake in this instance. This study provided an example of the methodological challenges experienced with measuring changes in absolute diet using a FFQ, and reaffirmed the need for novel prospective assessment methods capable of capturing natural variance in usual intakes. Study 2: The development and trial of NuDAM recording protocol The feasibility of the Nutricam mobile phone photo/voice dietary record was evaluated in 10 adults with T2DM (6 Male; age=64.7±3.8 years; BMI=33.9±7.0 kg/m2). Intake was recorded over a 3-day period using both Nutricam and a written estimated food record (EFR). Compared to the EFR, the Nutricam device was found to be acceptable among subjects, however, energy intake was under-recorded using Nutricam (-0.6±0.8 MJ/day; p<0.05). Beverages and snacks were the items most frequently not recorded using Nutricam; however forgotten meals contributed to the greatest difference in energy intake between records. In addition, the quality of dietary data recorded using Nutricam was unacceptable for just under one-third of entries. It was concluded that an additional mechanism was necessary to complement dietary information collected via Nutricam. Modifications to the method were made to allow for clarification of Nutricam entries and probing forgotten foods during a brief phone call to the subject the following morning. The revised recording protocol was evaluated in Study 4. Study 3: The development and trial of the NuDAM analysis protocol Part A explored the effect of the type of portion size estimation aid (PSEA) on the error associated with quantifying four portions of 15 single foods items contained in photographs. Seventeen dietetic students (1 male; age=24.7±9.1 years; BMI=21.1±1.9 kg/m2) estimated all food portions on two occasions: without aids and with aids (food models or reference food photographs). Overall, the use of a PSEA significantly reduced mean (±SD) group error between estimates compared to no aid (-2.5±11.5% vs. 19.0±28.8%; p<0.05). The type of PSEA (i.e. food models vs. reference food photograph) did not have a notable effect on the group estimation error (-6.7±14.9% vs. 1.4±5.9%, respectively; p=0.321). This exploratory study provided evidence that the use of aids in general, rather than the type, was more effective in reducing estimation error. Findings guided the development of the Dietary Estimation and Assessment Tool (DEAT) for use in the analysis of the Nutricam dietary record. Part B evaluated the effect of the DEAT on the error associated with the quantification of two 3-day Nutricam dietary records in a sample of 29 dietetic students (2 males; age=23.3±5.1 years; BMI=20.6±1.9 kg/m2). Subjects were randomised into two groups: Group A and Group B. For Record 1, the use of the DEAT (Group A) resulted in a smaller error compared to estimations made without the tool (Group B) (17.7±15.8%/day vs. 34.0±22.6%/day, p=0.331; respectively). In comparison, all subjects used the DEAT to estimate Record 2, with resultant error similar between Group A and B (21.2±19.2%/day vs. 25.8±13.6%/day; p=0.377 respectively). In general, the moderate estimation error associated with quantifying food items did not translate into clinically significant differences in the nutrient profile of the Nutricam dietary records, only amorphous foods were notably over-estimated in energy content without the use of the DEAT (57kJ/day vs. 274kJ/day; p<0.001). A large proportion (89.6%) of the group found the DEAT helpful when quantifying food items contained in the Nutricam dietary records. The use of the DEAT reduced quantification error, minimising any potential effect on the estimation of energy and macronutrient intake. Study 4: Evaluation of the NuDAM The accuracy and inter-rater reliability of the NuDAM to assess energy and macronutrient intake was evaluated in a sample of 10 adults (6 males; age=61.2±6.9 years; BMI=31.0±4.5 kg/m2). Intake recorded using both the NuDAM and a weighed food record (WFR) was coded by three dietitians and compared with an objective measure of total energy expenditure (TEE) obtained using the doubly labelled water technique. At the group level, energy intake (EI) was under-reported to a similar extent using both methods, with the ratio of EI:TEE was 0.76±0.20 for the NuDAM and 0.76±0.17 for the WFR. At the individual level, four subjects reported implausible levels of energy intake using the WFR method, compared to three using the NuDAM. Overall, moderate to high correlation coefficients (r=0.57-0.85) were found across energy and macronutrients except fat (r=0.24) between the two dietary measures. High agreement was observed between dietitians for estimates of energy and macronutrient derived for both the NuDAM (ICC=0.77-0.99; p<0.001) and WFR (ICC=0.82-0.99; p<0.001). All subjects preferred using the NuDAM over the WFR to record intake and were willing to use the novel method again over longer recording periods. This research program explored two novel approaches which utilised distinct technologies to aid in the nutritional management of adults with T2DM. In particular, this thesis makes a significant contribution to the evidence base surrounding the use of PhRs through the development, trial and evaluation of a novel mobile phone photo/voice dietary record. The NuDAM is an extremely promising advancement in the nutritional management of individuals with diabetes and other chronic conditions. Future applications lie in integrating the NuDAM with other technologies to facilitate practice across the remaining stages of the nutrition care process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A holistic study of the composition of the basalt groundwaters of the Atherton Tablelands region in Queensland, Australia was undertaken to elucidate possible mechanisms for the evolution of these very low salinity, silica- and bicarbonate-rich groundwaters. It is proposed that aluminosilicate mineral weathering is the major contributing process to the overall composition of the basalt groundwaters. The groundwaters approach equilibrium with respect to the primary minerals with increasing pH and are mostly in equilibrium with the major secondary minerals (kaolinite and smectite), and other secondary phases such as goethite, hematite, and gibbsite, which are common accessory minerals in the Atherton basalts. The mineralogy of the basalt rocks, which has been examined using X-ray diffraction and whole rock geochemistry methods, supports the proposed model for the hydrogeochemical evolution of these groundwaters: precipitation + CO 2 (atmospheric + soil) + pyroxene + feldspars + olivine yields H 4SiO 4, HCO 3 -, Mg 2+, Na +, Ca 2+ + kaolinite and smectite clays + amorphous or crystalline silica + accessory minerals (hematite, goethite, gibbsite, carbonates, zeolites, and pyrite). The variations in the mineralogical content of these basalts also provide insights into the controls on groundwater storage and movement in this aquifer system. The fresh and weathered vesicular basalts are considered to be important in terms of zones of groundwater occurrence, while the fractures in the massive basalt are important pathways for groundwater movement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective The aim of this study was to demonstrate the potential of near-infrared (NIR) spectroscopy for categorizing cartilage degeneration induced in animal models. Method Three models of osteoarthritic degeneration were induced in laboratory rats via one of the following methods: (i) menisectomy (MSX); (ii) anterior cruciate ligament transaction (ACLT); and (iii) intra-articular injection of mono-ido-acetete (1 mg) (MIA), in the right knee joint, with 12 rats per model group. After 8 weeks, the animals were sacrificed and tibial knee joints were collected. A custom-made nearinfrared (NIR) probe of diameter 5 mm was placed on the cartilage surface and spectral data were acquired from each specimen in the wavenumber range 4 000 – 12 500 cm−1. Following spectral data acquisition, the specimens were fixed and Safranin–O staining was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis based on principal component analysis and partial least squares regression, the spectral data were then related to the Mankinscores of the samples tested. Results Mild to severe degenerative cartilage changes were observed in the subject animals. The ACLT models showed mild cartilage degeneration, MSX models moderate, and MIA severe cartilage degenerative changes both morphologically and histologically. Our result demonstrate that NIR spectroscopic information is capable of separating the cartilage samples into different groups relative to the severity of degeneration, with NIR correlating significantly with their Mankinscore (R2 = 88.85%). Conclusion We conclude that NIR is a viable tool for evaluating articularcartilage health and physical properties such as change in thickness with degeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ross River Virus has caused reported outbreaks of epidemic polyarthritis, a chronic debilitating disease associated with significant long-term morbidity in Australia and the Pacific region since the 1920s. To address this public health concern, a formalin- and UV-inactivated whole virus vaccine grown in animal protein-free cell culture was developed and tested in preclinical studies to evaluate immunogenicity and efficacy in animal models. After active immunizations, the vaccine dose-dependently induced antibodies and protected adult mice from viremia and interferon α/β receptor knock-out (IFN-α/βR(-/-)) mice from death and disease. In passive transfer studies, administration of human vaccinee sera followed by RRV challenge protected adult mice from viremia and young mice from development of arthritic signs similar to human RRV-induced disease. Based on the good correlation between antibody titers in human sera and protection of animals, a correlate of protection was defined. This is of particular importance for the evaluation of the vaccine because of the comparatively low annual incidence of RRV disease, which renders a classical efficacy trial impractical. Antibody-dependent enhancement of infection, did not occur in mice even at low to undetectable concentrations of vaccine-induced antibodies. Also, RRV vaccine-induced antibodies were partially cross-protective against infection with a related alphavirus, Chikungunya virus, and did not enhance infection. Based on these findings, the inactivated RRV vaccine is expected to be efficacious and protect humans from RRV disease