982 resultados para Military strategy
Resumo:
Increasing energy consumption has exerted great pressure on natural resources; this has led to a move towards sustainable energy resources to improve security of supply and to reduce greenhouse gas emissions. However, the rush to the cure may have been made in haste. Biofuels in particular, have a bad press both in terms of competition with good agricultural land for food, and also in terms of the associated energy balance with the whole life cycle analysis of the biofuel system. The emphasis is now very much on sustainable biofuel production; biofuels from wastes and lignocellulosic material are now seen as good sustainable biofuels that affect significantly better greenhouse gas balances as compared with first generation biofuels. Ireland has a significant resource of organic waste that could be a potential source of energy through anaerobic digestion. Ireland has 8% of the cattle population of the EU with less than 1% of the human population; as a result 91% of agricultural land in Ireland is under grass. Residues such as slurries and slaughter waste together with energy crops such as grass have an excellent potential to produce biogas that may be upgraded to biomethane. This biomethane may be used as a natural gas substitute; bio-compressed natural gas may then be an avenue for a biofuel strategy. It is estimated that a maximum potential of 33% of natural gas may be substituted by 2020 with a practical obtainable level of 7.5% estimated. Together with biodiesel from residues the practical obtainable level of this strategy may effect greater than a 5% substitution by energy of transport. The residues considered in this strategy to produce biofuel (excluding grass) have the potential to save 93,000 ha of agricultural land (23% of Irish arable land) when compared to a rapeseed biodiesel strategy. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
In 1997 the Irish government adopted the National Anti-Poverty Strategy (NAPS), a global target for the reduction of poverty which illuminates a range of issues relating to official poverty targets. The Irish target is framed in terms of a relative poverty measure incorporating both relative income and direct measures of deprivation based on data on the extent of poverty from 1994. Since 1994 Ireland has experienced an unprecedented period of economic growth that makes it particularly important to assess whether the target has been achieved, but in doing so we cannot avoid asking some underlying questions about how poverty should be measured and monitored over time. After briefly outlining the nature of the NAPS measure, this article examines trends in poverty in Ireland between 1987 and 1997, Results show that the relative income and deprivation components of the NAPS measure reveal differential trends with increasing relative income poverty, but decreasing deprivation. However, this differential could be due to the fact that the direct measures of deprivation upon which NAPS is based have not been updated to take account of changes in real living standards and increasing expectations. To test whether this is so, we examine the extent to which expectations about living standards and the structure of deprivation have changed over time using confirmatory factor analysis and tests of criterion validity using different definitions of deprivation. Results show that the combined income and deprivation measure, as originally constituted, continues to identify a set of households experiencing generalised deprivation resulting from a lack of resources.
Resumo:
Composite materials are finding increasing use on primary aerostructures to meet demanding performance targets while reducing environmental impact. This paper presents a finite-element-based preliminary optimization methodology for postbuckling stiffened panels, which takes into account damage mechanisms that lead to delamination and subsequent failure by stiffener debonding. A global-local modeling approach is adopted in which the boundary conditions on the local model are extracted directly from the global model. The optimization procedure is based on a genetic algorithm that maximizes damage resistance within the postbuckling regime. This routine is linked to a finite element package and the iterative procedure automated. For a given loading condition, the procedure optimized the stacking sequence of several areas of the panel, leading to an evolved panel that displayed superior damage resistance in comparison with nonoptimized designs.
A pseudo-transient solution strategy for the analysis of delamination by means of interface elements
Resumo:
Recent efforts in the finite element modelling of delamination have concentrated on the development of cohesive interface elements. These are characterised by a bilinear constitutive law, where there is an initial high positive stiffness until a threshold stress level is reached, followed by a negative tangent stiffness representing softening (or damage evolution). Complete decohesion occurs when the amount of work done per unit area of crack surface is equal to a critical strain energy release rate. It is difficult to achieve a stable, oscillation-free solution beyond the onset of damage, using standard implicit quasi-static methods, unless a very refined mesh is used. In the present paper, a new solution strategy is proposed based on a pseudo-transient formulation and demonstrated through the modelling of a double cantilever beam undergoing Mode I delamination. A detailed analysis into the sensitivity of the user-defined parameters is also presented. Comparisons with other published solutions using a quasi-static formulation show that the pseudo-transient formulation gives improved accuracy and oscillation-free results with coarser meshes
Resumo:
In a human-computer dialogue system, the dialogue strategy can range from very restrictive to highly flexible. Each specific dialogue style has its pros and cons and a dialogue system needs to select the most appropriate style for a given user. During the course of interaction, the dialogue style can change based on a user’s response and the system observation of the user. This allows a dialogue system to understand a user better and provide a more suitable way of communication. Since measures of the quality of the user’s interaction with the system can be incomplete and uncertain, frameworks for reasoning with uncertain and incomplete information can help the system make better decisions when it chooses a dialogue strategy. In this paper, we investigate how to select a dialogue strategy based on aggregating the factors detected during the interaction with the user. For this purpose, we use probabilistic logic programming (PLP) to model probabilistic knowledge about how these factors will affect the degree of freedom of a dialogue. When a dialogue system needs to know which strategy is more suitable, an appropriate query can be executed against the PLP and a probabilistic solution with a degree of satisfaction is returned. The degree of satisfaction reveals how much the system can trust the probability attached to the solution.
Resumo:
The quality of single crystal diamond obtained by microwave CVD processes has been drastically improved in the last 5 years thanks to surface pretreatment of the substrates [A. Tallaire, J. Achard, F. Silva, R.S. Sussmann, A. Gicquel, E. Rzepka, Physica Status Solidi (A) 201, 2419-2424 (2004); G. Bogdan, M. Nesladek, J. D'Haen, J. Maes, V.V. Moshchalkov, K. Haenen, M. D'Olieslaeger, Physica Status Solidi (A) 202, 2066-2072 (2005); M. Yamamoto, T. Teraji, T. Ito, Journal of Crystal Growth 285, 130-136 (2005)]. Additionally, recent results have unambiguously shown the occurrence of (110) faces on crystal edges and (113) faces on crystal corners [F. Silva, J. Achard, X. Bonnin, A. Michau, A. Tallaire, O. Brinza, A. Gicquel, Physica Status Solidi (A) 203, 3049-3055 (2006)]. We have developed a 3D geometrical growth model to account for the final crystal morphology. The basic parameters of this growth model are the relative displacement speeds of (111), (110) and (113) faces normalized to that of the (100) faces, respectively alpha, beta, and gamma. This model predicts both the final equilibrium shape of the crystal (i.e. after infinite growth time) and the crystal morphology as a function of alpha, beta, gamma, and deposition time.
An optimized operating point, deduced from the model, has been validated experimentally by measuring the growth rate in (100), (111), (110), and (113) orientations. Furthermore, the evolution of alpha, beta, gamma as a function of methane concentration in the gas discharge has been established. From these results, crystal growth strategies can be proposed in order, for example, to enlarge the deposition area. In particular, we will show, using the growth model, that the only possibility to significantly increase the deposition area is, for our growth conditions, to use a (113) oriented substrate. A comparison between the grown crystal and the model results will be discussed and characterizations of the grown film (Photoluminescence spectroscopy, EPR, SEM) will be presented. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Health services research has emerged as a tool for decision makers to make services more effective and efficient. While its value as a basis for decision making is well established, the incorporation of such evidence into decision making remains inconsistent. To this end, strengthening collaborative relationships between researchers and healthcare decision makers has been identified as a significant strategy for putting research evidence into practice.
Resumo:
The practice of mixed-methods research has increased considerably over the last 10 years. While these studies have been criticized for violating quantitative and qualitative paradigmatic assumptions, the methodological quality of mixed-method studies has not been addressed. The purpose of this paper is to identify criteria to critically appraise the quality of mixed-method studies in the health literature. Criteria for critically appraising quantitative and qualitative studies were generated from a review of the literature. These criteria were organized according to a cross-paradigm framework. We recommend that these criteria be applied to a sample of mixed-method studies which are judged to be exemplary. With the consultation of critical appraisal experts and experienced qualitative, quantitative, and mixed-method researchers, further efforts are required to revise and prioritize the criteria according to importance.
Resumo:
Nitric oxide (NO) is important for the regulation of a number of diverse biological processes, including vascular tone, neurotransmission, inflammatory cell responsiveness, defence against invading pathogens and wound healing. Transition metal exchanged zeolites are nanoporous materials with high-capacity storage properties for gases such as NO. The NO stores are liberated upon contact with aqueous environments, thereby making them ideal candidates for use in biological and clinical settings. Here, we demonstrate the NO release capacity and powerful bactericidal properties of a novel NO-storing Zn2+-exchanged zeolite material at a 50 wt.% composition in a polytetrafluoroethylene polymer. Further to our published data showing the anti-thrombotic effects of a similar NO-loaded zeolite, this study demonstrates the antibacterial properties of NO-releasing zeolites against clinically relevant strains of bacteria, namely Gram-negative Pseudomonas aeruginosa and Gram-positive methicillin-sensitive and methicillin-resistant Staphylococcus aureus and Clostridium difficile. Thus our study highlights the potential of NO-loaded zeolites as biocompatible medical device coatings with anti-infective properties. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.