920 resultados para Metastable intermediate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-invasive ventilation (NIV) is the application of a ventilatory support without resorting to invasive methods. Today it’s considered a credible therapeutic option, with enough scientiic evidence to support its application in various situations and clinical settings related to the treatment of acute respiratory disease, as well as chronic respiratory disease. Objectives: Characterize patients undergoing NIV admitted in Unit Intermediate Care (ICU) in the period from October 1st 2015 to June 30th 2016. Methods: Prospective study conducted in ICU between October 2015 and June 2016. In this study were included all patients hospitalized in this unit (ICU) and in that time period a sample of 57 participants was obtained. As data collection instruments we used a questionnaire for sociodemographic and clinical data and the Braden scale. Results: Participants were mostly male 38 (66.7%), the average age 69.5 ± 11.3 years, ranging between 43 and 92 years. They weighed on average 76.6 kg (52 and 150), with an average body mass index of 28.5 kg/m2 (20 to 58.5). With skin intact 28 (49.1%) with abnormal perfusion 12 (21.1%), with altered sensitivity 11 (19.3%) and a high risk of ulcer on the scale of Braden 37 (65%). The admission diagnosis was respiratory failure 33 (57.3%) and had different backgrounds. We used reused mask 53 (93.0%), the average time of NIV was 7.1 days (1-28), 4.8 days of hospitalization (1-18) and an average of 7.8 IPAP pressure. 11 (19.3%) of the participants developed face ulcer pressure.Conclusions: The NIV is used in patients with advanced age, obesity, respiratory failure and high risk of face ulcer development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high velocity of free atoms associated with the thermal motion, together with the velocity distribution of atoms has imposed the ultimate limitation on the precision of ultrahigh resolution spectroscopy. A sample consisting of low velocity atoms would provide a substantial improvement in spectroscopy resolution. To overcome the problem of thermal motion, atomic physicists have pursued two goals; first, the reduction of the thermal motion (cooling); and second, the confinement of the atoms by means of electromagnetic fields (trapping). Cooling carried sufficiently far, eliminates the motional problems, whereas trapping allows for long observation times. In this work the laser cooling and trapping of an argon atomic beam will be discussed. The experiments involve a time-of-flight spectroscopy on metastable argon atoms. Laser deceleration or cooling of atoms is achieved by counter propagating a photon against an atomic beam of metastable atoms. The solution to the Doppler shift problem is achieved using spatially varying magnetic field along the beam path to Zeeman shift the atomic resonance frequency so as to keep the atoms in resonance with a fixed frequency cooling laser. For trapping experiments a Magnetooptical trap (MOT) will be used. The MOT is formed by three pairs of counter-propagating laser beams with mutual opposite circular polarization and a frequency tuned slightly below the center of the atomic resonance and superimposed on a magnetic quadrupole field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen requirements at bulb initiation for production of intermediate-day onions Article in Acta horticulturae · October 2016 DOI: 10.17660/ActaHortic.2016.1142.11 1st Rui Machado 16.44 · Universidade de Évora 2nd David R. Bryla 30.16 · United States Department of Agriculture Abstract Nitrogen requirements at bulb initiation for production of intermediate-day onions Authors: R.M.A. Machado, D.R. Bryla Keywords: Allium cepa, crop growth, nitrogen uptake, soil nitrate Abstract: The effect of nitrogen application on growth, nitrogen (N) uptake, yield, and quality of intermediate-day onion (Allium cepa 'Guimar') was evaluated in the field in southern Portugal. Plants were fertilized with 30 kg ha-1 N at transplanting, 10 kg ha-1 N at 29 days after transplanting (DAT) during early leaf growth, and with 0, 20, 40 and 60 kg ha-1 N at 51 DAT at the initiation of bulbing. The root system of plants in each treatment were concentrated in the top 0.1 m of soil and limited to 0.3 m depth but neither root length density nor rooting depth were affected by N application during later stages of bulb development. Leaf and bulb dry matter, on the other hand, increased linearly with N rate during bulb growth (85 DAT) and at harvest (114 DAT), respectively. Soil nitrate-N (NO3-N) at 0-0.3 m depth likewise increased linearly with N rate during bulb growth but declined from 15-30 mg kg-1 at bulbing to >10 mg kg-1 in each treatment by harvest. A substantial amount of N in the plants, which ranged from 302-525 mg, was taken up from the soil. Application of 60 kg ha-1 N resulted in luxury consumption. Yield (fresh bulb weight) increased from 0.19 kg plant-1 with no N at bulbing to as much as 0.28 kg plant-1 with 60 kg ha-1 N. Bulbs harvested from plants fertilized 40-60 kg ha-1 N averaged 8.2-8.5 cm in diameter, while those from plants with no N at bulbing averaged only 7.2 cm in diameter. Application of N fertilizer is thus recommended at bulbing to increase N uptake, yield, and bulb size of intermediate-day onions, particularly in dry Mediterranean climates where many onions are produced. Other components of quality, including neck diameter, bulb water content, total soluble solids, and juice pH, were not affect by N applied at bulbing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new semi-implicit stress integration algorithm for finite strain plasticity (compatible with hyperelas- ticity) is introduced. Its most distinctive feature is the use of different parameterizations of equilibrium and reference configurations. Rotation terms (nonlinear trigonometric functions) are integrated explicitly and correspond to a change in the reference configuration. In contrast, relative Green–Lagrange strains (which are quadratic in terms of displacements) represent the equilibrium configuration implicitly. In addition, the adequacy of several objective stress rates in the semi-implicit context is studied. We para- metrize both reference and equilibrium configurations, in contrast with the so-called objective stress integration algorithms which use coinciding configurations. A single constitutive framework provides quantities needed by common discretization schemes. This is computationally convenient and robust, as all elements only need to provide pre-established quantities irrespectively of the constitutive model. In this work, mixed strain/stress control is used, as well as our smoothing algorithm for the complemen- tarity condition. Exceptional time-step robustness is achieved in elasto-plastic problems: often fewer than one-tenth of the typical number of time increments can be used with a quantifiable effect in accuracy. The proposed algorithm is general: all hyperelastic models and all classical elasto-plastic models can be employed. Plane-stress, Shell and 3D examples are used to illustrate the new algorithm. Both isotropic and anisotropic behavior is presented in elasto-plastic and hyperelastic examples.