949 resultados para Maximum likelihood estimator (MLE)
Resumo:
Smoothing splines are a popular approach for non-parametric regression problems. We use periodic smoothing splines to fit a periodic signal plus noise model to data for which we assume there are underlying circadian patterns. In the smoothing spline methodology, choosing an appropriate smoothness parameter is an important step in practice. In this paper, we draw a connection between smoothing splines and REACT estimators that provides motivation for the creation of criteria for choosing the smoothness parameter. The new criteria are compared to three existing methods, namely cross-validation, generalized cross-validation, and generalization of maximum likelihood criteria, by a Monte Carlo simulation and by an application to the study of circadian patterns. For most of the situations presented in the simulations, including the practical example, the new criteria out-perform the three existing criteria.
Resumo:
Outcome-dependent, two-phase sampling designs can dramatically reduce the costs of observational studies by judicious selection of the most informative subjects for purposes of detailed covariate measurement. Here we derive asymptotic information bounds and the form of the efficient score and influence functions for the semiparametric regression models studied by Lawless, Kalbfleisch, and Wild (1999) under two-phase sampling designs. We show that the maximum likelihood estimators for both the parametric and nonparametric parts of the model are asymptotically normal and efficient. The efficient influence function for the parametric part aggress with the more general information bound calculations of Robins, Hsieh, and Newey (1995). By verifying the conditions of Murphy and Van der Vaart (2000) for a least favorable parametric submodel, we provide asymptotic justification for statistical inference based on profile likelihood.
Resumo:
This paper discusses estimation of the tumor incidence rate, the death rate given tumor is present and the death rate given tumor is absent using a discrete multistage model. The model was originally proposed by Dewanji and Kalbfleisch (1986) and the maximum likelihood estimate of the tumor incidence rate was obtained using EM algorithm. In this paper, we use a reparametrization to simplify the estimation procedure. The resulting estimates are not always the same as the maximum likelihood estimates but are asymptotically equivalent. In addition, an explicit expression for asymptotic variance and bias of the proposed estimators is also derived. These results can be used to compare efficiency of different sacrifice schemes in carcinogenicity experiments.
Resumo:
We introduce a diagnostic test for the mixing distribution in a generalised linear mixed model. The test is based on the difference between the marginal maximum likelihood and conditional maximum likelihood estimates of a subset of the fixed effects in the model. We derive the asymptotic variance of this difference, and propose a test statistic that has a limiting chi-square distribution under the null hypothesis that the mixing distribution is correctly specified. For the important special case of the logistic regression model with random intercepts, we evaluate via simulation the power of the test in finite samples under several alternative distributional forms for the mixing distribution. We illustrate the method by applying it to data from a clinical trial investigating the effects of hormonal contraceptives in women.
Resumo:
There is an emerging interest in modeling spatially correlated survival data in biomedical and epidemiological studies. In this paper, we propose a new class of semiparametric normal transformation models for right censored spatially correlated survival data. This class of models assumes that survival outcomes marginally follow a Cox proportional hazard model with unspecified baseline hazard, and their joint distribution is obtained by transforming survival outcomes to normal random variables, whose joint distribution is assumed to be multivariate normal with a spatial correlation structure. A key feature of the class of semiparametric normal transformation models is that it provides a rich class of spatial survival models where regression coefficients have population average interpretation and the spatial dependence of survival times is conveniently modeled using the transformed variables by flexible normal random fields. We study the relationship of the spatial correlation structure of the transformed normal variables and the dependence measures of the original survival times. Direct nonparametric maximum likelihood estimation in such models is practically prohibited due to the high dimensional intractable integration of the likelihood function and the infinite dimensional nuisance baseline hazard parameter. We hence develop a class of spatial semiparametric estimating equations, which conveniently estimate the population-level regression coefficients and the dependence parameters simultaneously. We study the asymptotic properties of the proposed estimators, and show that they are consistent and asymptotically normal. The proposed method is illustrated with an analysis of data from the East Boston Ashma Study and its performance is evaluated using simulations.
Resumo:
Latent class regression models are useful tools for assessing associations between covariates and latent variables. However, evaluation of key model assumptions cannot be performed using methods from standard regression models due to the unobserved nature of latent outcome variables. This paper presents graphical diagnostic tools to evaluate whether or not latent class regression models adhere to standard assumptions of the model: conditional independence and non-differential measurement. An integral part of these methods is the use of a Markov Chain Monte Carlo estimation procedure. Unlike standard maximum likelihood implementations for latent class regression model estimation, the MCMC approach allows us to calculate posterior distributions and point estimates of any functions of parameters. It is this convenience that allows us to provide the diagnostic methods that we introduce. As a motivating example we present an analysis focusing on the association between depression and socioeconomic status, using data from the Epidemiologic Catchment Area study. We consider a latent class regression analysis investigating the association between depression and socioeconomic status measures, where the latent variable depression is regressed on education and income indicators, in addition to age, gender, and marital status variables. While the fitted latent class regression model yields interesting results, the model parameters are found to be invalid due to the violation of model assumptions. The violation of these assumptions is clearly identified by the presented diagnostic plots. These methods can be applied to standard latent class and latent class regression models, and the general principle can be extended to evaluate model assumptions in other types of models.
Resumo:
Latent class analysis (LCA) and latent class regression (LCR) are widely used for modeling multivariate categorical outcomes in social sciences and biomedical studies. Standard analyses assume data of different respondents to be mutually independent, excluding application of the methods to familial and other designs in which participants are clustered. In this paper, we develop multilevel latent class model, in which subpopulation mixing probabilities are treated as random effects that vary among clusters according to a common Dirichlet distribution. We apply the Expectation-Maximization (EM) algorithm for model fitting by maximum likelihood (ML). This approach works well, but is computationally intensive when either the number of classes or the cluster size is large. We propose a maximum pairwise likelihood (MPL) approach via a modified EM algorithm for this case. We also show that a simple latent class analysis, combined with robust standard errors, provides another consistent, robust, but less efficient inferential procedure. Simulation studies suggest that the three methods work well in finite samples, and that the MPL estimates often enjoy comparable precision as the ML estimates. We apply our methods to the analysis of comorbid symptoms in the Obsessive Compulsive Disorder study. Our models' random effects structure has more straightforward interpretation than those of competing methods, thus should usefully augment tools available for latent class analysis of multilevel data.
Resumo:
Riparian ecology plays an important part in the filtration of sediments from upland agricultural lands. The focus of this work makes use of multispectral high spatial resolution remote sensing imagery (Quickbird by Digital Globe) and geographic information systems (GIS) to characterize significant riparian attributes in the USDA’s experimental watershed, Goodwin Creek, located in northern Mississippi. Significant riparian filter characteristics include the width of the strip, vegetation properties, soil properties, topography, and upland land use practices. The land use and vegetation classes are extracted from the remotely sensed image with a supervised maximum likelihood classification algorithm. Accuracy assessments resulted in an acceptable overall accuracy of 84 percent. In addition to sensing riparian vegetation characteristics, this work addresses the issue of concentrated flow bypassing a riparian filter. Results indicate that Quickbird multispectral remote sensing and GIS data are capable of determining riparian impact on filtering sediment. Quickbird imagery is a practical solution for land managers to monitor the effectiveness of riparian filtration in an agricultural watershed.
Resumo:
A post classification change detection technique based on a hybrid classification approach (unsupervised and supervised) was applied to Landsat Thematic Mapper (TM), Landsat Enhanced Thematic Plus (ETM+), and ASTER images acquired in 1987, 2000 and 2004 respectively to map land use/cover changes in the Pic Macaya National Park in the southern region of Haiti. Each image was classified individually into six land use/cover classes: built-up, agriculture, herbaceous, open pine forest, mixed forest, and barren land using unsupervised ISODATA and maximum likelihood supervised classifiers with the aid of field collected ground truth data collected in the field. Ground truth information, collected in the field in December 2007, and including equalized stratified random points which were visual interpreted were used to assess the accuracy of the classification results. The overall accuracy of the land classification for each image was respectively: 1987 (82%), 2000 (82%), 2004 (87%). A post classification change detection technique was used to produce change images for 1987 to 2000, 1987 to 2004, and 2000 to 2004. It was found that significant changes in the land use/cover occurred over the 17- year period. The results showed increases in built up (from 10% to 17%) and herbaceous (from 5% to 14%) areas between 1987 and 2004. The increase of herbaceous was mostly caused by the abandonment of exhausted agriculture lands. At the same time, open pine forest and mixed forest areas lost (75%) and (83%) of their area to other land use/cover types. Open pine forest (from 20% to 14%) and mixed forest (from18 to 12%) were transformed into agriculture area or barren land. This study illustrated the continuing deforestation, land degradation and soil erosion in the region, which in turn is leading to decrease in vegetative cover. The study also showed the importance of Remote Sensing (RS) and Geographic Information System (GIS) technologies to estimate timely changes in the land use/cover, and to evaluate their causes in order to design an ecological based management plan for the park.
Resumo:
Hall-effect thrusters (HETs) are compact electric propulsion devices with high specific impulse used for a variety of space propulsion applications. HET technology is well developed but the electron properties in the discharge are not completely understood, mainly due to the difficulty involved in performing accurate measurements in the discharge. Measurements of electron temperature and density have been performed using electrostatic probes, but presence of the probes can significantly disrupt thruster operation, and thus alter the electron temperature and density. While fast-probe studies have expanded understanding of HET discharges, a non-invasive method of measuring the electron temperature and density in the plasma is highly desirable. An alternative to electrostatic probes is a non-perturbing laser diagnostic technique that measures Thomson scattering from the plasma. Thomson scattering is the process by which photons are elastically scattered from the free electrons in a plasma. Since the electrons have thermal energy their motion causes a Doppler shift in the scattered photons that is proportional to their velocity. Like electrostatic probes, laser Thomson scattering (LTS) can be used to determine the temperature and density of free electrons in the plasma. Since Thomson scattering measures the electron velocity distribution function directly no assumptions of the plasma conditions are required, allowing accurate measurements in anisotropic and non-Maxwellian plasmas. LTS requires a complicated measurement apparatus, but has the potential to provide accurate, non-perturbing measurements of electron temperature and density in HET discharges. In order to assess the feasibility of LTS diagnostics on HETs non-invasive measurements of electron temperature and density in the near-field plume of a Hall thruster were performed using a custom built laser Thomson scattering diagnostic. Laser measurements were processed using a maximum likelihood estimation method and results were compared to conventional electrostatic double probe measurements performed at the same thruster conditions. Electron temperature was found to range from approximately 1 – 40 eV and density ranged from approximately 1.0 x 1017 m-3 to 1.3 x 1018 m-3 over discharge voltages from 250 to 450 V and mass flow rates of 40 to 80 SCCM using xenon propellant.
Resumo:
BACKGROUND/AIMS: While several risk factors for the histological progression of chronic hepatitis C have been identified, the contribution of HCV genotypes to liver fibrosis evolution remains controversial. The aim of this study was to assess independent predictors for fibrosis progression. METHODS: We identified 1189 patients from the Swiss Hepatitis C Cohort database with at least one biopsy prior to antiviral treatment and assessable date of infection. Stage-constant fibrosis progression rate was assessed using the ratio of fibrosis Metavir score to duration of infection. Stage-specific fibrosis progression rates were obtained using a Markov model. Risk factors were assessed by univariate and multivariate regression models. RESULTS: Independent risk factors for accelerated stage-constant fibrosis progression (>0.083 fibrosis units/year) included male sex (OR=1.60, [95% CI 1.21-2.12], P<0.001), age at infection (OR=1.08, [1.06-1.09], P<0.001), histological activity (OR=2.03, [1.54-2.68], P<0.001) and genotype 3 (OR=1.89, [1.37-2.61], P<0.001). Slower progression rates were observed in patients infected by blood transfusion (P=0.02) and invasive procedures or needle stick (P=0.03), compared to those infected by intravenous drug use. Maximum likelihood estimates (95% CI) of stage-specific progression rates (fibrosis units/year) for genotype 3 versus the other genotypes were: F0-->F1: 0.126 (0.106-0.145) versus 0.091 (0.083-0.100), F1-->F2: 0.099 (0.080-0.117) versus 0.065 (0.058-0.073), F2-->F3: 0.077 (0.058-0.096) versus 0.068 (0.057-0.080) and F3-->F4: 0.171 (0.106-0.236) versus 0.112 (0.083-0.142, overall P<0.001). CONCLUSIONS: This study shows a significant association of genotype 3 with accelerated fibrosis using both stage-constant and stage-specific estimates of fibrosis progression rates. This observation may have important consequences for the management of patients infected with this genotype.
Resumo:
Most studies on selection in plants estimate female fitness components and neglect male mating success, although the latter might also be fundamental to understand adaptive evolution. Information from molecular genetic markers can be used to assess determinants of male mating success through parentage analyses. We estimated paternal selection gradients on floral traits in a large natural population of the herb Mimulus guttatus using a paternity probability model and maximum likelihood methods. This analysis revealed more significant selection gradients than a previous analysis based on regression of estimated male fertilities on floral traits. There were differences between results of univariate and multivariate analyses most likely due to the underlying covariance structure of the traits. Multivariate analysis, which corrects for the covariance structure of the traits, indicated that male mating success declined with distance from and depended on the direction to the mother plants. Moreover, there was directional selection for plants with fewer open flowers which have smaller corollas, a smaller anther-stigma separation, more red dots on the corolla and a larger fluctuating asymmetry therein. For most of these traits, however, there was also stabilizing selection indicating that there are intermediate optima for these traits. The large number of significant selection gradients in this study shows that even in relatively large natural populations where not all males can be sampled, it is possible to detect significant paternal selection gradients, and that such studies can give us valuable information required to better understand adaptive plant evolution.
Resumo:
In this paper we compare the performance of two image classification paradigms (object- and pixel-based) for creating a land cover map of Asmara, the capital of Eritrea and its surrounding areas using a Landsat ETM+ imagery acquired in January 2000. The image classification methods used were maximum likelihood for the pixel-based approach and Bhattacharyya distance for the object-oriented approach available in, respectively, ArcGIS and SPRING software packages. Advantages and limitations of both approaches are presented and discussed. Classifications outputs were assessed using overall accuracy and Kappa indices. Pixel- and object-based classification methods result in an overall accuracy of 78% and 85%, respectively. The Kappa coefficient for pixel- and object-based approaches was 0.74 and 0.82, respectively. Although pixel-based approach is the most commonly used method, assessment and visual interpretation of the results clearly reveal that the object-oriented approach has advantages for this specific case-study.
Resumo:
Truncated distributions of the exponential family have great influence in the simulation models. This paper discusses the truncated Weibull distribution specifically. The truncation of the distribution is achieved by the Maximum Likelihood Estimation method or combined with the expectation and variance expressions. After the fitting of distribution, the goodness-of-fit tests (the Chi-Square test and the Kolmogorov-Smirnov test) are executed to rule out the rejected hypotheses. Finally the distributions are integrated in various simulation models, e. g. shipment consolidation model, to compare the influence of truncated and original versions of Weibull distribution on the model.
Resumo:
BACKGROUND: HCV coinfection remains a major cause of morbidity and mortality among HIV-infected individuals and its incidence has increased dramatically in HIV-infected men who have sex with men(MSM). METHODS: Hepatitis C virus (HCV) coinfection in the Swiss HIV Cohort Study(SHCS) was studied by combining clinical data with HIV-1 pol-sequences from the SHCS Drug Resistance Database(DRDB). We inferred maximum-likelihood phylogenetic trees, determined Swiss HIV-transmission pairs as monophyletic patient pairs, and then considered the distribution of HCV on those pairs. RESULTS: Among the 9748 patients in the SHCS-DRDB with known HCV status, 2768(28%) were HCV-positive. Focusing on subtype B(7644 patients), we identified 1555 potential HIV-1 transmission pairs. There, we found that, even after controlling for transmission group, calendar year, age and sex, the odds for an HCV coinfection were increased by an odds ratio (OR) of 3.2 [95% confidence interval (CI) 2.2, 4.7) if a patient clustered with another HCV-positive case. This strong association persisted if transmission groups of intravenous drug users (IDUs), MSMs and heterosexuals (HETs) were considered separately(in all cases OR >2). Finally we found that HCV incidence was increased by a hazard ratio of 2.1 (1.1, 3.8) for individuals paired with an HCV-positive partner. CONCLUSIONS: Patients whose HIV virus is closely related to the HIV virus of HIV/HCV-coinfected patients have a higher risk for carrying or acquiring HCV themselves. This indicates the occurrence of domestic and sexual HCV transmission and allows the identification of patients with a high HCV-infection risk.