972 resultados para Matrix-Splitting Scheme
Resumo:
Using the first-principles real-space linear muffin-tin orbital method within the atomic sphere approximation (RS-LMTO-ASA) we study hyperfine and local magnetic properties of substituted pure Fe and Fe-Cu clusters in an fcc Cu matrix. Spin and orbital contributions to magnetic moments, hyperfine fields and the Mossbauer isomer shifts at the Fe sites in Fe precipitates and Fe-Cu alloy clusters of sizes up to 60 Fe atoms embedded in the Cu matrix are calculated and the influence of the local environment on these properties is discussed.
Resumo:
Here we present the results of magneto resistance measurements in tilted magnetic field and compare them with calculations. The comparison between calculated and measured spectra for the case of perpendicular fields enable us to estimate the dependence of the valley splitting as a function of the magnetic field and the total Lande g-factor (which is assumed to be independent of the magnetic field). Since both the exchange contribution to the Zeeman splitting as well as the valley splitting are properties associated with the 2D quantum confinement, they depend only on the perpendicular component of the magnetic field, while the bare Zeeman splitting depends on the total magnetic field. This information aided by the comparison between experimental and calculated gray scale maps permits to obtain separately the values of the exchange and the bare contribution to the g-factor.
Resumo:
The evidence of successful growth of Mn-doped PbS (Pb(1-x)Mn(x)S) nanocrystals (NCs) in SiO(2)-Na(2)CO(3)-Al(2)O(3)-PbO(2)-B(2)O(3) template, using the fusion method, is reported on in this study. The as-grown Pb(1-x)Mn(x)S NC is characterized using optical absorption, electron paramagnetic resonance, and atomic force microscopy. The data are discussed in terms of two distinct scenarios, namely a core-doped and a shell-doped nanostructure. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this article, we present an analytical direct method, based on a Numerov three-point scheme, which is sixth order accurate and has a linear execution time on the grid dimension, to solve the discrete one-dimensional Poisson equation with Dirichlet boundary conditions. Our results should improve numerical codes used mainly in self-consistent calculations in solid state physics.
Resumo:
The immobilization of enzymes in organized two-dimensional matrices is a key requirement for many biotechnological applications. In this paper, we used the Langmuir-Blodgett (LB) technique to obtain controlled architectures of urease immobilized in solid supports, whose physicochemical properties were investigated in detail. Urease molecules were adsorbed at the air-water interface and incorporated into Langmuir monolayers of the phospholipid dipalmitoyl phosphatidyl glycerol (DPPG). Incorporation of urease made DPPG monolayers more flexible and caused the reduction of the equilibrium and dynamic elasticity of the film. Urease and DPPG-urease mixed monolayers could be transferred onto solid substrates, forming LB films. A close packing arrangement of urease was obtained, especially in the mixed LB films, which was inferred with nanogravimetry and electrochemistry measurements. From the blocking effect of the LB films deposited onto indium tin oxide (ITO) substrates, the electrochemical properties of the LB films pointed to a charge transport controlled by the lipid architecture. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Vitreous samples containing high concentrations of WO3 (above 40% M) have been used as a target to prepare thin films. Such films were deposited using the electron beam evaporation method onto soda-lime glass substrates. These films were characterized by X-ray diffraction (XRD), perfilometry, X-ray energy dispersion spectroscopy (EDS), M-Lines and UV-vis absorption spectroscopy. In this work, experimental parameters were established to obtain stable thin films showing a chemical composition close to the glass precursor composition and with a high concentration of WO3. These amorphous thin films of about 4 mu m in thickness exhibit a deep blue coloration but they can be bleached by thermal treatment near the glass transition temperature. Such bleached films show several guided modes in the visible region and have a high refractive index. Controlled crystallization was realized and thus it was possible to obtain WO3 microcrystals in the amorphous phase. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Pb(2)CrO(5) nanoparticles were embedded in an amorphous SiO(2) matrix by the sol-gel process. The pH and heat treatment effects were evaluated in terms of structural, microstructural and optical properties from Pb(2)CrO(5)/SiO(2) compounds. X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), and diffuse reflectance techniques were employed. Kubelka-Munk theory was used to calculate diffuse reflectance spectra that were compared to the experimental results. Finally, colorimetric coordinates of the Pb(2)CrO(5)/SiO(2) compounds were shown and discussed. In general, an acid pH initially dissolves Pb(2)CrO(5) nanoparticles and following heat treatment at 600 A degrees C crystallized into PbCrO(4) composition with grain size around 6 nm in SiO(2) matrix. No Pb(2)CrO(5) solubilization was observed for basic pH. These nanoparticles were incorporated in silica matrix showing a variety of color ranging from yellow to orange.
Resumo:
In a previous paper, we developed a phenomenological-operator technique aiming to simplify the estimate of losses due to dissipation in cavity quantum electrodynamics. In this paper, we apply that technique to estimate losses during an entanglement concentration process in the context of dissipative cavities. In addition, some results, previously used without proof to justify our phenomenological-operator approach, are now formally derived, including an equivalent way to formulate the Wigner-Weisskopf approximation.
Resumo:
We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a particularly efficient application of the method for which we can prove that corrections vanish asymptotically as exp(-(E(N+1) - E(n))t). The gap E(N+1) - E(n) can be made large by increasing the number N of interpolating fields in the correlation matrix. We also show how excited state matrix elements can be extracted such that contaminations from all other states disappear exponentially in time. As a demonstration we present numerical results for the extraction of ground state and excited B-meson masses and decay constants in static approximation and to order 1/m(b) in HQET.
Resumo:
Using Heavy Quark Effective Theory with non-perturbatively determined parameters in a quenched lattice calculation, we evaluate the splittings between the ground state and the first two radially excited states of the B(s) system at static order. We also determine the splitting between first excited and ground state, and between the B(s)* and B(s) ground states to order 1/m(b). The Generalized Eigenvalue Problem and the use of all-to-all propagators are important ingredients of our approach.
Resumo:
In this work we construct the stationary measure of the N species totally asymmetric simple exclusion process in a matrix product formulation. We make the connection between the matrix product formulation and the queueing theory picture of Ferrari and Martin. In particular, in the standard representation, the matrices act on the space of queue lengths. For N > 2 the matrices in fact become tensor products of elements of quadratic algebras. This enables us to give a purely algebraic proof of the stationary measure which we present for N=3.
Resumo:
The immersed boundary method is a versatile tool for the investigation of flow-structure interaction. In a large number of applications, the immersed boundaries or structures are very stiff and strong tangential forces on these interfaces induce a well-known, severe time-step restriction for explicit discretizations. This excessive stability constraint can be removed with fully implicit or suitable semi-implicit schemes but at a seemingly prohibitive computational cost. While economical alternatives have been proposed recently for some special cases, there is a practical need for a computationally efficient approach that can be applied more broadly. In this context, we revisit a robust semi-implicit discretization introduced by Peskin in the late 1970s which has received renewed attention recently. This discretization, in which the spreading and interpolation operators are lagged. leads to a linear system of equations for the inter-face configuration at the future time, when the interfacial force is linear. However, this linear system is large and dense and thus it is challenging to streamline its solution. Moreover, while the same linear system or one of similar structure could potentially be used in Newton-type iterations, nonlinear and highly stiff immersed structures pose additional challenges to iterative methods. In this work, we address these problems and propose cost-effective computational strategies for solving Peskin`s lagged-operators type of discretization. We do this by first constructing a sufficiently accurate approximation to the system`s matrix and we obtain a rigorous estimate for this approximation. This matrix is expeditiously computed by using a combination of pre-calculated values and interpolation. The availability of a matrix allows for more efficient matrix-vector products and facilitates the design of effective iterative schemes. We propose efficient iterative approaches to deal with both linear and nonlinear interfacial forces and simple or complex immersed structures with tethered or untethered points. One of these iterative approaches employs a splitting in which we first solve a linear problem for the interfacial force and then we use a nonlinear iteration to find the interface configuration corresponding to this force. We demonstrate that the proposed approach is several orders of magnitude more efficient than the standard explicit method. In addition to considering the standard elliptical drop test case, we show both the robustness and efficacy of the proposed methodology with a 2D model of a heart valve. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In this work an efficient third order non-linear finite difference scheme for solving adaptively hyperbolic systems of one-dimensional conservation laws is developed. The method is based oil applying to the solution of the differential equation an interpolating wavelet transform at each time step, generating a multilevel representation for the solution, which is thresholded and a sparse point representation is generated. The numerical fluxes obtained by a Lax-Friedrichs flux splitting are evaluated oil the sparse grid by an essentially non-oscillatory (ENO) approximation, which chooses the locally smoothest stencil among all the possibilities for each point of the sparse grid. The time evolution of the differential operator is done on this sparse representation by a total variation diminishing (TVD) Runge-Kutta method. Four classical examples of initial value problems for the Euler equations of gas dynamics are accurately solved and their sparse solutions are analyzed with respect to the threshold parameters, confirming the efficiency of the wavelet transform as an adaptive grid generation technique. (C) 2008 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
The goal of this paper is to present an approximation scheme for a reaction-diffusion equation with finite delay, which has been used as a model to study the evolution of a population with density distribution u, in such a way that the resulting finite dimensional ordinary differential system contains the same asymptotic dynamics as the reaction-diffusion equation.
Resumo:
We give a general matrix formula for computing the second-order skewness of maximum likelihood estimators. The formula was firstly presented in a tensorial version by Bowman and Shenton (1998). Our matrix formulation has numerical advantages, since it requires only simple operations on matrices and vectors. We apply the second-order skewness formula to a normal model with a generalized parametrization and to an ARMA model. (c) 2010 Elsevier B.V. All rights reserved.