990 resultados para Markov states
Resumo:
In a recent seminal paper, Gibson and Wexler (1993) take important steps to formalizing the notion of language learning in a (finite) space whose grammars are characterized by a finite number of parameters. They introduce the Triggering Learning Algorithm (TLA) and show that even in finite space convergence may be a problem due to local maxima. In this paper we explicitly formalize learning in finite parameter space as a Markov structure whose states are parameter settings. We show that this captures the dynamics of TLA completely and allows us to explicitly compute the rates of convergence for TLA and other variants of TLA e.g. random walk. Also included in the paper are a corrected version of GW's central convergence proof, a list of "problem states" in addition to local maxima, and batch and PAC-style learning bounds for the model.
Resumo:
This report studies when and why two Hidden Markov Models (HMMs) may represent the same stochastic process. HMMs are characterized in terms of equivalence classes whose elements represent identical stochastic processes. This characterization yields polynomial time algorithms to detect equivalent HMMs. We also find fast algorithms to reduce HMMs to essentially unique and minimal canonical representations. The reduction to a canonical form leads to the definition of 'Generalized Markov Models' which are essentially HMMs without the positivity constraint on their parameters. We discuss how this generalization can yield more parsimonious representations of stochastic processes at the cost of the probabilistic interpretation of the model parameters.
Resumo:
The influence of laser-field parameters, such as intensity and pulse width, on the population of molecular excited state is investigated by using the time-dependent wavepacket method. For a two-state system in intense laser fields, the populations in the upper and lower states are given by the wavefunctions obtained by solving the Schrodinger equation through split-operator scheme. The calculation shows that both the laser intensity and the pulse width have a strong effect on the population in molecular excited state, and that as the common feature of light-matter interaction (LMI), the periodic changing of the population with the evolution time in each state can be interpreted by Rabi oscillation and area-theorem. The results illustrate that by controlling these two parameters, the needed population in excited state of interest can be obtained, which provides the foundation of light manipulation of molecular processes. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
For the first time, we have studied the potential-energy curves, spectroscopic terms, vibrational levels, and the spectroscopic constants of the ground and low-lying excited states of NiI by employing the complete active space self-consistent-field method with relativistic effective core potentials followed by multireference configuration-interaction calculations. We have identified six low-lying electronic states of NiI with doublet spin multiplicities, including three states of Delta symmetry and three states of Pi symmetry of the molecule within 15 000 cm(-1). The lowest (2)Delta state is identified as the ground state of NiI, and the lowest (2)Pi state is found at 2174.56 cm(-1) above it. These results fully support the previous conclusion of the observed spectra although our computational energy separation of the two states is obviously larger than that of the experimental values. The present calculations show that the low-lying excited states [13.9] (2)Pi and [14.6] (2)Delta are 3 (2)Pi and 3 (2)Delta electronic states of NiI, respectively. Our computed spectroscopic terms, vibrational levels, and spectroscopic constants for them are in good agreement with the experimental data available at present. In the present work we have not only suggested assignments for the observed states but also computed more electronic states that are yet to be observed experimentally. (c) 2005 American Institute of Physics.
Resumo:
F. Smith and Q. Shen. Fault identification through the combination of symbolic conflict recognition and Markov Chain-aided belief revision. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 34(5):649-663, 2004.
Resumo:
McInnes, C., 'A different kind of war? 11 September and the United States' Afghan war'. Review of International Studies, 29 (2), 165-184. RAE2008
Resumo:
Poolton, Nigel; Ozanyan, K.B.; Wallinga, J.; Murray, A.S., (2002) 'Electrons in feldspar II: a consideration of the influence of conduction band-tail states on luminescence processes', Physics and Chemistry of Minerals 29(3) pp.217-225 RAE2008
Resumo:
Poolton, Nigel; Hamilton, B.; Evans, D.A., (2005) 'Synchrotron-laser pump-probe luminescence spectroscopy: Correlation of electronic defect states with x-ray absorption in wide-gap solids', Journal of Physics D: Applied Physics 38 pp.1478-1484 RAE2008