926 resultados para March of Dimes Birth Defects Foundation
Resumo:
Semiconductor nanowires (NWs) are one- or quasi one-dimensional systems whose physical properties are unique as compared to bulk materials because of their nanoscaled sizes. They bring together quantum world and semiconductor devices. NWs-based technologies may achieve an impact comparable to that of current microelectronic devices if new challenges will be faced. This thesis primarily focuses on two different, cutting-edge aspects of research over semiconductor NW arrays as pivotal components of NW-based devices. The first part deals with the characterization of electrically active defects in NWs. It has been elaborated the set-up of a general procedure which enables to employ Deep Level Transient Spectroscopy (DLTS) to probe NW arrays’ defects. This procedure has been applied to perform the characterization of a specific system, i.e. Reactive Ion Etched (RIE) silicon NW arrays-based Schottky barrier diodes. This study has allowed to shed light over how and if growth conditions introduce defects in RIE processed silicon NWs. The second part of this thesis concerns the bowing induced by electron beam and the subsequent clustering of gallium arsenide NWs. After a justified rejection of the mechanisms previously reported in literature, an original interpretation of the electron beam induced bending has been illustrated. Moreover, this thesis has successfully interpreted the formation of NW clusters in the framework of the lateral collapse of fibrillar structures. These latter are both idealized models and actual artificial structures used to study and to mimic the adhesion properties of natural surfaces in lizards and insects (Gecko effect). Our conclusion are that mechanical and surface properties of the NWs, together with the geometry of the NW arrays, play a key role in their post-growth alignment. The same parameters open, then, to the benign possibility of locally engineering NW arrays in micro- and macro-templates.
Resumo:
Calcium fluoride (CaF2) is one of the key lens materials in deep-ultraviolet microlithography because of its transparency at 193 nm and its nearly perfect optical isotropy. Its physical and chemical properties make it applicable for lens fabrication. The key feature of CaF2 is its extreme laser stability. rnAfter exposing CaF2 to 193 nm laser irradiation at high fluences, a loss in optical performance is observed, which is related to radiation-induced defect structures in the material. The initial rapid damage process is well understood as the formation of radiation-induced point defects, however, after a long irradiation time of up to 2 months, permanent damage of the crystals is observed. Based on experimental results, these permanent radiation-induced defect structures are identified as metallic Ca colloids.rnThe properties of point defects in CaF2 and their stabilization in the crystal bulk are calculated with density functional theory (DFT). Because the stabilization of the point defects and the formation of metallic Ca colloids are diffusion-driven processes, the diffusion coefficients for the vacancy (F center) and the interstitial (H center) in CaF2 are determined with the nudged elastic band method. The optical properties of Ca colloids in CaF2 are obtained from Mie-theory, and their formation energy is determined.rnBased on experimental observations and the theoretical description of radiation-induced point defects and defect structures, a diffusion-based model for laser-induced material damage in CaF2 is proposed, which also includes a mechanism for annealing of laser damage. rn
Resumo:
Salt marshes are coastal ecosystem in the upper intertidal zone between internal water and sea and are widely spread throughout Italy, from Friuli Venezia Giulia, in the North, to Sicily, in the South. These delicate environments are threatened by eutrophication, habitat conversion (for land reclaiming or agriculture) and climate change impacts such as sea level rise. The objectives of my thesis were to: 1) analyse the distribution and biomass of the perennial native cordgrass Spartina maritima (one of the most relevant foundation species in the low intertidal saltmarsh vegetation in the study region) at 7 sites along the Northern Adriatic coast and relate it to critical environmental parameters and 2) to carry out a nutrient manipulation experiment to detect nutrient enrichment effects on S. maritima biomass and vegetation characteristics. The survey showed significant differences among sites in biological response variables - i.e., live belowground, live aboveground biomass, above:belowground (R:S) biomass ratio, % cover, average height and stem density – which were mainly related to differences in nitrate, nitrite and phosphate contents in surface water. Preliminary results from the experiment (which is still ongoing) showed so far no significant effects of nutrient enrichment on live aboveground and belowground biomass, R:S ratio, leaf %Carbon, average height, stem density and random shoot height; however, a significantly higher (P=0.018) increase in leaf %Nitrogen content in treated plots indicated that nutrient uptake had occurred.
Resumo:
Recent reports by the Centers for Disease Control and Prevention have decried the high rate of fetal mortality in the contemporary United States. Much of the data about fetal and infant deaths, as well as other poor pregnancy outcomes, are tabulated and tracked through vital statistics. In this article, I demonstrate how notions of fetal death became increasingly tied to the surveillance of maternal bodies through the tabulating and tracking of vital statistics in the middle part of the twentieth century. Using a historical analysis of the revisions to the United States Standard Certificate of Live Birth, and the United States Standard Report of Fetal Death, I examine how the categories of analysis utilized in these documents becomes integrally linked to contemporary ideas about fetal and perinatal death, gestational age, and prematurity. While it is evident that there are relationships between maternal behavior and birth outcomes, in this article I interrogate the ways in which the surveillance of maternal bodies through vital statistics has naturalized these relationships. Copyright 2013 Elsevier Ltd. All rights reserved.
Resumo:
Stem cell based autologous grafting has recently gained mayor interest in various surgical fields for the treatment of extensive tissue defects. CD34(+) and CD133(+) cells that can be isolated from the pool of bone marrow mononuclear cells (BMC) are capable of differentiating into mature endothelial cells in vivo. These endothelial progenitor cells (EPC) are believed to represent a major portion of the angiogenic regenerative cells that are released from bone marrow when tissue injury has occurred. In recent years tissue engineers increasingly looked at the process of vessel neoformation because of its major importance for successful cell grafting to replace damaged tissue. Up to now one of the greatest problems preventing a clinical application is the large scale of expansion that is required for such purpose. We established a method to effectively enhance the expansion of CD34(+) and CD133(+) cells by the use of platelet-released growth factors (PRGF) as a media supplement. PRGF were prepared from thrombocyte concentrates and used as a media supplement to iscove's modified dulbecco's media (IMDM). EPC were immunomagnetically separated from human bone morrow monocyte cells and cultured in IMDM + 10% fetal calf serum (FCS), IMDM + 5%, FCS + 5% PRGF and IMDM + 10% PRGF. We clearly demonstrate a statistically significant higher and faster cell proliferation rate at 7, 14, 21, and 28 days of culture when both PRGF and FCS were added to the medium as opposed to 10% FCS or 10% PRGF alone. The addition of 10% PRGF to IMDM in the absence of FCS leads to a growth arrest from day 14 on. In histochemical, immunocytochemical, and gene-expression analysis we showed that angiogenic and precursor markers of CD34(+) and CD133(+) cells are maintained during long-term culture. In summary, we established a protocol to boost the expansion of CD34(+) and CD133(+) cells. Thereby we provide a technical step towards the clinical application of autologous stem cell transplantation.
Resumo:
To present the safety profile, the early healing phase and the clinical outcomes at 24 weeks following treatment of human intrabony defects with open flap debridement (OFD) alone or with OFD and rhGDF-5 adsorbed onto a particulate β-tricalcium phosphate (β-TCP) carrier. Twenty chronic periodontitis patients, each with at least one tooth exhibiting a probing depth ≥6 mm and an associated intrabony defect ≥4 mm entered the study. Ten subjects (one defect/patient) were randomized to receive OFD alone (control) and ten subjects OFD combined with rhGDF-5/β-TCP. Blood samples were collected at screening, and at weeks 2 and 24 to evaluate routine hematology and clinical chemistry, rhGDF-5 plasma levels, and antirhGDF-5 antibody formation. Plaque and gingival indices, bleeding on probing, probing depth, clinical attachment level, and radiographs were recorded pre- and 24 weeks postsurgery. Comparable safety profiles were found in the two treatment groups. Neither antirhGDF-5 antibody formation nor relevant rhGDF-5 plasma levels were detected in any patient. At 6 months, treatment with OFD + rhGDF-5/β-TCP resulted in higher but statistically not significant PD reduction (3.7 ± 1.2 vs. 3.1 ± 1.8 mm; p = 0.26) and CAL gain (3.2 ± 1.7 vs. 1.7 ± 2.2 mm; p = 0.14) compared to OFD alone. In the tested concentration, the use of rhGDF-5/β-TCP appeared to be safe and the material possesses a sound biological rationale. Thus, further adequately powered, randomized controlled clinical trials are warranted to confirm the clinical relevance of this new approach in regenerative periodontal therapy. rhGDF-5/β-TCP may represent a promising new techology in regenerative periodontal therapy.
Resumo:
The reconstruction of large bone defects after injury or tumor resection often requires the use of bone substitution. Artificial scaffolds based on synthetic biomaterials can overcome disadvantages of autologous bone grafts, like limited availability and donor side morbidity. Among them, scaffolds based on nanofibers offer great advantages. They mimic the extracellular matrix, can be used as a carrier for growth factors and allow the differentiation of human mesenchymal stem cells. Differentiation is triggered by a series of signaling processes, including integrin and bone morphogenetic protein (BMP), which act in a cooperative manner. The aim of this study was to analyze whether these processes can be remodeled in artificial poly-(l)-lactide acid (PLLA) based nanofiber scaffolds in vivo. Electrospun matrices composed of PLLA-collagen type I or BMP-2 incorporated PLLA-collagen type I were implanted in calvarial critical size defects in rats. Cranial CT-scans were taken 4, 8 and 12 weeks after implantation. Specimens obtained after euthanasia were processed for histology and immunostainings on osteocalcin, BMP-2 and Smad5. After implantation the scaffolds were inhomogeneously colonized and cells were only present in wrinkle- or channel-like structures. Ossification was detected only in focal areas of the scaffold. This was independent of whether BMP-2 was incorporated in the scaffold. However, cells that migrated into the scaffold showed an increased ratio of osteocalcin and Smad5 positive cells compared to empty defects. Furthermore, in case of BMP-2 incorporated PLLA-collagen type I scaffolds, 4 weeks after implantation approximately 40 % of the cells stained positive for BMP-2 indicating an autocrine process of the ingrown cells. These findings indicate that a cooperative effect between BMP-2 and collagen type I can be transferred to PLLA nanofibers and furthermore, that this effect is active in vivo. However, this had no effect on bone formation. The reason for this seems to be an unbalanced colonization of the scaffolds with cells, due to insufficient pore size.
Resumo:
Objective:The aim of the study is to determine the neuroglial differentiation potential of human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) from preterm birth when compared to term delivery.Study Design:The WJ-MSCs from umbilical cords of preterm birth and term controls were isolated and induced into neural progenitors. The cells were analyzed for neuroglial markers by flow cytometry, real-time polymerase chain reaction, and immunocytochemistry. Results:Independent of gestational age, a subset of WJ-MSC displayed the neural progenitor cell markers Nestin and Musashi-1 and the mature neural markers microtubule-associated protein 2, glial fibrillary acidic protein, and myelin basic protein. Neuroglial induction of WJ-MSCs from term and preterm birth resulted in the enhanced transcription of Nestin and Musashi-1.Conclusions:Undifferentiated WJ-MSCs from preterm birth express neuroglial markers and can be successfully induced into neural progenitors similar to term controls. Their potential use as cellular graft in neuroregenerative therapy for peripartum brain injury in preterm birth has to be tested.
Resumo:
The project studied the way the post-communist transition has affected the position of women in society and two post-Soviet states, Armenia and Russia, were chosen for a comparative study. Although in many respects the two countries show rather similar tendencies, there are important differences. The most dramatic of these lie in the field of the women's movement and state support, in family lifestyles and public thinking, and in the perception of female roles in society by both women and men in both countries. Whereas in Russia, at least in large cities, it is possible to speak of a movement concerned with equality and women's rights, in Armenia there are few women's organisations and those that exist are most focused on support for children and poor families. In Russia, many post-Soviet changes can be described as a shift towards 'Western' rather than 'Eastern' values, while in Armenia this tendency is much weaker and exists alongside a relapse into traditional attitudes. Iskandarian suggests possible explanations for this, both intrinsic (tradition. motivation) and external (influences, neighbouring countries, involvement in wars, the economic situation, migrations, political regimes). Nevertheless, for both societies it is possible to speak of a growing awareness of women's needs and of the birth of a new tradition in family and public life brought by the post-Soviet winds of change.
Resumo:
From the moment of their birth, a person's life is determined by their sex. Goroshko wanted to find out why this difference is so striking, why society is so determined to sustain it, and how it can persist even when certain national or behavioural stereotypes are erased. She believes there are both social and biological differences between men and women, and set out to analyse these distinctions as they are manifested in language. Certain general characteristics can be identified. Males tend to write with less fluency, to refer to events in a verb phrase, to be time-oriented, to involve themselves more in their references to events, to locate events in their personal sphere of activity, and to refer less to others. Goroshko therefore concludes that the male is more active, more ego-involved in what he does and less concerned about others. Women were more fluent, referred to events in a noun-phrase, were less time-oriented, tended to be less involved in their event references, located events within their interactive community, and referred more to others. They spent much more time discussing personal and domestic subjects, relationship problems, family, health and reproductive matters, weight, food and clothing, men, and other women. Computer analysis showed that female speech was substantially more emotional, using hyperbole, metaphor, comparisons, epithets, ways of enumeration, interjections, rhetorical questions and exclamations. The level of literacy was higher in female speech, and women made fewer grammatical and spelling mistakes in written texts. Goroshko believes that her findings have relevance beyond the linguistic field. When working on anonymous texts she has been able to decide on the sex of the author and so believes that her research may even be of benefit to forensic science.
Resumo:
BACKGROUND: The aim of this study was to evaluate the efficacy of a combination graft, using recombinant human bone morphogenetic protein-2 (rhBMP-2) and culture-expanded cells derived from bone marrow, for bone regeneration in a nonhuman primate mandible. METHODS: Five Japanese monkeys were used. Three milliliters of bone marrow was obtained from the tibia and plated into culture flasks. Adherent cells were cultured until near confluence; then, the proliferated cells were transferred to a three-dimensional culture system using collagen beads as the cell carrier. The medium was supplemented with ascorbic acid, beta-glycerophosphate, and dexamethasone to promote osteoblastic differentiation. After further proliferation on beads, the cells were mixed with a collagen sponge that was impregnated with rhBMP-2 and grafted into surgically created segmental bone defects of the mandibles. Three animals received this treatment, and either culture-expanded cells alone or collagen beads without cells were implanted into the remaining two monkeys as controls. The animals were killed 24 weeks after surgery, and the results were assessed by radiographic and histologic evaluation. RESULTS: The combination graft of culture-expanded bone marrow cells with rhBMP-2 in a collagen sponge regenerated the mandibular bone completely. By contrast, the graft of culture-expanded cells alone resulted in only a small amount of bone formation, and the implantation of collagen beads alone led to no bone formation. CONCLUSION: The combination graft of rhBMP-2 and culture-expanded cells, which requires only a small amount of bone marrow, is a reliable method for the reconstruction of segmental bone defects of the mandible.