964 resultados para Malária falciparum


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study describes the validation of a spectrophotometric method to estimate oligonucleotides association with cationic nanoemulsions. Phosphodiester and phosphorothioate oligonucleotides targeting Plasmodium falciparum topoisomerase II were analyzed at 262 nm. Linear response (r > 0.998) was observed from 0.4 to 1.0 nmol/mL, the relative standard deviation values for the intra- and inter-days precision were lower than 2.6% and the recovery ranged from 98.8 to 103.6% for both oligonucleotides. The association efficiency was estimated based on an ultrafiltration/centrifugation method. Oligonucleotides recovery through 30 kDa-membranes was higher than 92%. The extent of oligonucleotides association (42 to 98%) varied with the composition of nanoemulsions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Six bromotyrosine-derived compounds were isolated from the Caribbean marine sponge Aiolochroia crassa: 3-bromo-5-hydroxy-O-methyltyrosine (1), 3-bromo-N,N,N-trimethyltyrosinium (2), 3-bromo-N,N,N,O-tetramethyltyrosinium (3), 3,5-dibromo-N,N,N-trimethyltyrosinium (4), 3,5-dibromo-N,N,N,O-tetramethyltyrosinium (5), and aeroplysinin-1 (6). Structural determination was performed using NMR, MS and comparison with literature data. All isolated compounds were screened for their in vitro activity against Leishmania panamensis, Plasmodium falciparum and Trypanosoma cruzi. Compound 4 showed selective antiparasitic activity against Leishmania and Plasmodium parasites. This is the first report of compounds 1, 4 and 5 in the sponge A. crassa and the first biological activity reports for compounds 2-4. This work shows that bromotyrosines are potential antiparasitic agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Minquartia guianensis, popularly known as acariquara, was phytochemically investigated. The following triterpenes were isolated from the dichloromethane extract of leaves: lupen-3-one (1), taraxer-3-one (2) and oleanolic acid (3). The dichloromethane extract of branches yielded the triterpene 3β-methoxy-lup-20(29)-ene (4). The chemical structures were characterized by NMR data. Plant extracts, substance 3, squalene (5) and taraxerol (6), (5 and 6 previously isolated), were evaluated by in vitro assay against chloroquine resistant Plasmodium falciparum. The dichloromethane extract of leaves and the three triterpenes assayed have shown partial activity. Thus, these results demonstrated that new potential antimalarial natural products can be found even in partially active extracts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the main challenges in the development of new antimalarial drugs is to achieve a viable lead candidate with good pharmacokinetic properties. Curcumin has a broad range of biological activities, including antimalarial activity. Herein, we report the antimalarial activity of six curcumin derivatives (6-12) and an initial analysis of their pharmacokinetic properties. Five compounds have demonstrated potent activity against the P. falciparum in vitro (IC50 values ranging from 1.7 to 15.2 µg mL-1), with moderate or low cytotoxicity against the HeLa cell line. The substitution of the carbonyl group in 6 by a 2,4-dinitrophenylhydrazone group (to afford 11) increases the Selective Index. These preliminary results indicate curcumin derivatives as potential antimalarial compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phytochemical investigations of the stem bark, leaves and twigs of Guatteria citriodora resulted in the isolation of eight alkaloids: liriodenine, lysicamine, O-methylmoschatoline, 3-methoxyoxoputerine, palmatine, 3-methoxyguadiscidine, guattescidine and oxoputerine. The structures of the isolated substances were established by extensive spectroscopic techniques (1D and 2D NMR) and mass spectrometry (MS), as well as by comparison with data reported in the literature. The in vitro antimalarial activity of the alkaloidal fractions of the leaves and twigs against Plasmodium falciparum FCR3 showed significant results, with IC50 = 1.07 and 0.33 mg mL-1, respectively. The alkaloidal fraction of the leaves showed moderate activity against Enterococcus faecalis, with IC50 = 125.0 mg mL-1. Antiplasmodial and antibacterial activities are attributed to alkaloidal constituents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O Serviço Nacional de Malária operacionalizou uma fábrica de pesticidas organoclorados utilizados em campanhas de saúde pública (HCH e DDT) entre 1950 e 1965, na Cidade dos Meninos, no município de Duque de Caxias, RJ, visando combater doenças rurais endêmicas. Após denúncia na mídia, em 1989, a FEEMA detectou que, com a desativação da fábrica, foram deixados resíduos da produção dos pesticidas, causando a contaminação do solo. Neste trabalho foram realizadas análises foliares e de solo em dois talhões de espécies de eucalipto (Eucalyptus grandis e Corymbia citriodora (Hook.) K.D. Hill & L.A.S. Jhonson), com o objetivo de avaliar o potencial da espécie como fitorremediador de área contaminada por organoclorados. Coletaram-se cinco amostras compostas de folhas (três do C. citriodora e duas do E. grandis) e uma composta de solo em cada um dos talhões estudados para análise de organoclorados por cromatografia gasosa. As alturas médias dos talhões de E. grandis e C. citriodora foram, respectivamente, de 9,1 e 16,8 com diâmetros médios de 7,8 e 15,95 cm; a média de C. citriodora foi similar à de outros plantios em regiões de mata atlântica, ficando a de E. grandis pouco abaixo. Detectou-se a presença de organoclorados nas folhas analisadas, porém em baixas concentrações. Nos solos, as concentrações encontradas foram altas, sendo maiores no talhão de E. grandis. Os resultados foram comparados com análises prévias na área, indicando que as espécies atuaram como fitorremediadoras, especialmente o C. citriodora, uma vez que houve redução na contaminação do solo e absorção dos organoclorados pelas folhas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As cascas do caule de Simarouba amara Aubl., Simaroubaceae, são amplamente utilizadas pela medicina popular brasileira e de vários países das Américas Central e do Sul para o tratamento de malária, parasitas intestinais, diarreia, anemia e febre. Apesar de os quassinoides serem considerados os marcadores quimiotaxonômicos da espécie, a indisponibilidade de padrões para comercialização tem sido um dos grandes obstáculos à realização de seu controle de qualidade. Diante disso, o propósito deste estudo foi o desenvolvimento e validação de metodologia analítica por espectrofotometria para a quantificação do teor de taninos totais das cascas do caule de S. amara, visto que esta classe de metabólitos é uma das mais abundantes e representativas já descritas para a espécie. O método proposto baseou-se na quantificação a 760 nm, após a adição do reagente Folin-Ciocalteu, e sua validação incluiu todos os parâmetros preconizados pela RE 899. Os resultados indicaram que o método proposto foi adequadamente desenvolvido e validado, constituindo ferramenta analítica útil para o controle de qualidade de S. amara.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objetivo: estudar a ação crônica do difosfato de primaquina sobre a prenhez da rata albina. Métodos: foram utilizadas sessenta ratas prenhes divididas, ao acaso, em seis grupos numericamente iguais. O grupo I recebeu diariamente, por gavagem, 1 ml de água destilada desde o dia zero até o 20º dia de prenhez (controle). As ratas dos demais grupos também receberam diariamente, por gavagem, durante o mesmo período, sempre o volume de 1 ml, contendo, solução gradualmente mais concentrada de difosfato de primaquina: 0,25 mg/kg de peso, grupo II; 0,50 mg/kg de peso, grupo III; 0,75 mg/kg de peso, grupo IV; 1,5 mg/kg de peso, grupo V e 3,0 mg/kg de peso, grupo VI. Os pesos maternos foram considerados no dia zero e no 7º, 14º e 20º dias de prenhez, quando as matrizes foram sacrificadas. Resultados: nossos resultados mostraram que o difosfato de primaquina, nas dosagens utilizadas não interferiram em nenhuma das variáveis por nós consideradas, isto é, ganho de peso materno, peso das ninhadas, peso individual médio dos fetos, peso do conjunto das placentas e peso individual médio das placentas, número de implantações, número de placentas e número de fetos, quando comparados com o grupo controle. Não houve, também, nenhum caso de reabsorção, malformações, mortalidade materna ou óbito intra-uterino, em qualquer dos grupos estudados. Conclusão: nas condições por nós estabelecidas não há contra-indicação para o uso contínuo do difosfato de primaquina durante a prenhez da rata.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malaria continues to infect millions and kill hundreds of thousands of people worldwide each year, despite over a century of research and attempts to control and eliminate this infectious disease. Challenges such as the development and spread of drug resistant malaria parasites, insecticide resistance to mosquitoes, climate change, the presence of individuals with subpatent malaria infections which normally are asymptomatic and behavioral plasticity in the mosquito hinder the prospects of malaria control and elimination. In this thesis, mathematical models of malaria transmission and control that address the role of drug resistance, immunity, iron supplementation and anemia, immigration and visitation, and the presence of asymptomatic carriers in malaria transmission are developed. A within-host mathematical model of severe Plasmodium falciparum malaria is also developed. First, a deterministic mathematical model for transmission of antimalarial drug resistance parasites with superinfection is developed and analyzed. The possibility of increase in the risk of superinfection due to iron supplementation and fortification in malaria endemic areas is discussed. The model results calls upon stakeholders to weigh the pros and cons of iron supplementation to individuals living in malaria endemic regions. Second, a deterministic model of transmission of drug resistant malaria parasites, including the inflow of infective immigrants, is presented and analyzed. The optimal control theory is applied to this model to study the impact of various malaria and vector control strategies, such as screening of immigrants, treatment of drug-sensitive infections, treatment of drug-resistant infections, and the use of insecticide-treated bed nets and indoor spraying of mosquitoes. The results of the model emphasize the importance of using a combination of all four controls tools for effective malaria intervention. Next, a two-age-class mathematical model for malaria transmission with asymptomatic carriers is developed and analyzed. In development of this model, four possible control measures are analyzed: the use of long-lasting treated mosquito nets, indoor residual spraying, screening and treatment of symptomatic, and screening and treatment of asymptomatic individuals. The numerical results show that a disease-free equilibrium can be attained if all four control measures are used. A common pitfall for most epidemiological models is the absence of real data; model-based conclusions have to be drawn based on uncertain parameter values. In this thesis, an approach to study the robustness of optimal control solutions under such parameter uncertainty is presented. Numerical analysis of the optimal control problem in the presence of parameter uncertainty demonstrate the robustness of the optimal control approach that: when a comprehensive control strategy is used the main conclusions of the optimal control remain unchanged, even if inevitable variability remains in the control profiles. The results provide a promising framework for the design of cost-effective strategies for disease control with multiple interventions, even under considerable uncertainty of model parameters. Finally, a separate work modeling the within-host Plasmodium falciparum infection in humans is presented. The developed model allows re-infection of already-infected red blood cells. The model hypothesizes that in severe malaria due to parasite quest for survival and rapid multiplication, the Plasmodium falciparum can be absorbed in the already-infected red blood cells which accelerates the rupture rate and consequently cause anemia. Analysis of the model and parameter identifiability using Markov chain Monte Carlo methods is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whole blood samples (N = 295) were obtained from different locations in Amazonas and Sucre States, in Venezuela. Malaria was diagnosed by microscopy, OptiMAL™ and polymerase chain reaction (PCR), with Plasmodium vivax, P. falciparum, and P. malariae being detected when possible. We identified 93 infections, 66 of which were caused by P. vivax, 26 by P. falciparum, and 1 was a mixed infection. No infection caused by P. malariae was detected. The sensitivity and specificity of each diagnostic method were high: 95.7 and 97.9% for microscopy, 87.0 and 97.9% for OptiMAL, and 98.0 and 100% for PCR, respectively. Most samples (72.2%) showed more than 5000 parasites/µL blood. The sensitivity of the diagnosis by microscopy and OptiMAL decreased with lower parasitemia. All samples showing disagreement among the methods were reevaluated, but the first result was used for the calculations. Parasites were detected in the 6 false-negative samples by microscopy after the second examination. The mixed infection was only detected by PCR, while the other methods diagnosed it as P. falciparum (microscopy) or P. vivax (OptiMAL) infection. Most of the false results obtained with the OptiMAL strip were related to the P. falciparum-specific band, including 3 species misdiagnoses, which could be related to the test itself or to genetic variation of the Venezuelan strains. The use of the microscopic method for malaria detection is recommended for its low cost but is very difficult to implement in large scale, population-based studies; thus, we report here more efficient methods suitable for this purpose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cerebral malaria (CM) is a severe complication resulting from Plasmodium falciparum infection. This condition has been associated with cognitive, behavioral and motor dysfunctions, seizures and coma. The underlying mechanisms of CM are incompletely understood. Glutamate and other metabolites such as lactate have been implicated in its pathogenesis. In the present study, we investigated the involvement of glutamate in the behavioral symptoms of CM. Seventeen female C57BL/6 mice (20-25 g) aged 6-8 weeks were infected with P. berghei ANKA by the intraperitoneal route using a standardized inoculation of 10(6) parasitized red blood cells suspended in 0.2 mL PBS. Control animals (N = 17) received the same volume of PBS. Behavioral and neurological symptoms were analyzed by the SmithKline/Harwell/Imperial College/Royal Hospital/Phenotype Assessment (SHIRPA) battery. Glutamate release was measured in the cerebral cortex and cerebrospinal fluid of infected and control mice by fluorimetric assay. All functional categories of the SHIRPA battery were significantly altered in the infected mice at 6 days post-infection (dpi) (P ≤ 0.05). In parallel to CM symptoms, we found a significant increase in glutamate levels in the cerebral cortex (mean ± SEM; control: 11.62 ± 0.90 nmol/mg protein; infected at 3 dpi: 10.36 ± 1.17 nmol/mg protein; infected at 6 dpi: 26.65 ± 0.73 nmol/mg protein; with EGTA, control: 5.60 ± 1.92 nmol/mg protein; infected at 3 dpi: 6.24 ± 1.87 nmol/mg protein; infected at 6 dpi: 14.14 ± 0.84 nmol/mg protein) and in the cerebrospinal fluid (control: 128 ± 51.23 pmol/mg protein; infected: 301.4 ± 22.52 pmol/mg protein) of infected mice (P ≤ 0.05). These findings suggest a role of glutamate in the central nervous system dysfunction found in CM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A completely effective vaccine for malaria (one of the major infectious diseases worldwide) is not yet available; different membrane proteins involved in parasite-host interactions have been proposed as candidates for designing it. It has been found that proteins encoded by the merozoite surface protein (msp)-7 multigene family are antibody targets in natural infection; the nucleotide diversity of three Pvmsp-7 genes was thus analyzed in a Colombian parasite population. By contrast with P. falciparum msp-7 loci and ancestral P. vivax msp-7 genes, specie-specific duplicates of the latter specie display high genetic variability, generated by single nucleotide polymorphisms, repeat regions, and recombination. At least three major allele types are present in Pvmsp-7C, Pvmsp-7H and Pvmsp-7I and positive selection seems to be operating on the central region of these msp-7 genes. Although this region has high genetic polymorphism, the C-terminus (Pfam domain ID: PF12948) is conserved and could be an important candidate when designing a subunit-based antimalarial vaccine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The tight junction (TJ) is one of the most important structures established during merozoite invasion of host cells and a large amount of proteins stored in Toxoplasma and Plasmodium parasites’ apical organelles are involved in forming the TJ. Plasmodium falciparum and Toxoplasma gondii apical membrane antigen 1 (AMA-1) and rhoptry neck proteins (RONs) are the two main TJ components. It has been shown that RON4 plays an essential role during merozoite and sporozoite invasion to target cells. This study has focused on characterizing a novel Plasmodium vivax rhoptry protein, RON4, which is homologous to PfRON4 and PkRON4. Methods: The ron4 gene was re-annotated in the P. vivax genome using various bioinformatics tools and taking PfRON4 and PkRON4 amino acid sequences as templates. Gene synteny, as well as identity and similarity values between open reading frames (ORFs) belonging to the three species were assessed. The gene transcription of pvron4, and the expression and localization of the encoded protein were also determined in the VCG-1 strain by molecular and immunological studies. Nucleotide and amino acid sequences obtained for pvron4 in VCG-1 were compared to those from strains coming from different geographical areas. Results: PvRON4 is a 733 amino acid long protein, which is encoded by three exons, having similar transcription and translation patterns to those reported for its homologue, PfRON4. Sequencing PvRON4 from the VCG-1 strain and comparing it to P. vivax strains from different geographical locations has shown two conserved regions separated by a low complexity variable region, possibly acting as a “smokescreen”. PvRON4 contains a predicted signal sequence, a coiled-coil α-helical motif, two tandem repeats and six conserved cysteines towards the carboxyterminus and is a soluble protein lacking predicted transmembranal domains or a GPI anchor. Indirect immunofluorescence assays have shown that PvRON4 is expressed at the apical end of schizonts and co-localizes at the rhoptry neck with PvRON2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Rhoptries are specialized organelles from parasites belonging to the phylum Apicomplexa; they secrete their protein content during invasion of host target cells and are sorted into discrete subcompartments within rhoptry neck or bulb. This distribution is associated with these proteins’ role in tight junction (TJ) and parasitophorous vacuole (PV) formation, respectively. Methods: Plasmodium falciparum RON2 amino acid sequence was used as bait for screening the codifying gene for the homologous protein in the Plasmodium vivax genome. Gene synteny, as well as identity and similarity values, were determined for ron2 and its flanking genes among P. falciparum, P. vivax and other malarial parasite genomes available at PlasmoDB and Sanger Institute databases. Pvron2 gene transcription was determined by RT-PCR of cDNA obtained from the P. vivax VCG-1 strain. Protein expression and localization were assessed by Western blot and immunofluorescence using polyclonal anti-PvRON2 antibodies. Co-localization was confirmed using antibodies directed towards specific microneme and rhoptry neck proteins. Results and discussion: The first P. vivax rhoptry neck protein (named here PvRON2) has been identified in this study. PvRON2 is a 2,204 residue-long protein encoded by a single 6,615 bp exon containing a hydrophobic signal sequence towards the amino-terminus, a transmembrane domain towards the carboxy-terminus and two coiled coil a-helical motifs; these are characteristic features of several previously described vaccine candidates against malaria. This protein also contains two tandem repeats within the interspecies variable sequence possibly involved in evading a host’s immune system. PvRON2 is expressed in late schizonts and localized in rhoptry necks similar to what has been reported for PfRON2, which suggests its participation during target cell invasion. Conclusions: The identification and partial characterization of the first P. vivax rhoptry neck protein are described in the present study. This protein is homologous to PfRON2 which has previously been shown to be associated with PfAMA-1, suggesting a similar role for PvRON2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A completely effective vaccine for malaria (one of the major infectious diseases worldwide) is not yet available; different membrane proteins involved in parasite-host interactions have been proposed as candidates for designing it. It has been found that proteins encoded by the merozoite surface protein (msp)-7 multigene family are antibody targets in natural infection; the nucleotide diversity of three Pvmsp-7 genes was thus analyzed in a Colombian parasite population. By contrast with P. falciparum msp-7 loci and ancestral P. vivax msp-7 genes, specie-specific duplicates of the latter specie display high genetic variability, generated by single nucleotide polymorphisms, repeat regions, and recombination. At least three major allele types are present in Pvmsp-7C, Pvmsp-7H and Pvmsp-7I and positive selection seems to be operating on the central region of these msp-7 genes. Although this region has high genetic polymorphism, the C-terminus (Pfam domain ID: PF12948) is conserved and could be an important candidate when designing a subunit-based antimalarial vaccine.