977 resultados para MOVIE CHARACTERS
Resumo:
The subgenus Centris (Schisthemisia) Ayala: complementary notes and description of a new species (Hymenoptera, Apoidea). Centris (Schisthemisia)Ayala, 2002 is redescribed, pointing out some other important distinctive characters. It includes: Centris (Schisthemisia) flavilabris Mocsáry, 1899 (type species), Centris (Schisthemisia) boliviensis Mocsáry, 1899 stat. nov., Centris (Schisthemisia) fulva Friese, 1924 stat. nov., and Centris (Schisthemisia) restrepoi sp. nov. from Colombia, Villa Vicencio. A key to the species and illustrations are added.
Resumo:
Traditionally, the Drosophila guarani species group has been divided into two subgroups: the guarani and the guaramunu subgroups. Two, out of the four species included in this research, are members of the guarani subgroup (D. ornatifrons Duda, 1927 and D. subbadia Paterson & Mainland, 1943) and two are included in the guaramunu subgroup (D. maculifrons Duda, 1927 and D. griseolineata Duda, 1927). However, some authors have suggested that D. maculifrons and D. griseolineata are much closer to some species of the Drosophila tripunctata group than to some of the species of the guarani group. To add new data to the matter under dispute, Polyacrylamide Gel Eletrophoresis (PAGE-SDS) was used for the analysis and comparison of protein composition and Random Amplified Polymorphic DNA (RAPD) analysis to find differences in genomic DNA, in addition to the analysis of quantitative morphological characters previously described. Analysis of PAGE-SDS results in a dendrogram that pointed out D. subbadia as being the most distant within the Drosophila guarani group. However, these results were not supported either by RAPD analysis or by the analysis of continuous morphological characters, which supplied the clustering of D. subbadia with D. ornatifrons. Although our data give strong support to the clustering of D. subbadia and D. ornatifrons, none of the dendrograms provided a clade comprising D. maculifrons and D. griseolineata. Thus, this research does not support the traditional subdivision of the D. guarani group into those two subgroups.
Resumo:
Morphologic characterization of adult of Nusalala tessellata (Gerstaecker, 1888) (Neuroptera, Hemerobiidae). Adult of N. tessellata is redescribed based on morphological characters. 533 specimens were collected in São Paulo state in plantations of citrus (Santa Rosa de Viterbo), soybean (Nuporanga), cotton (Ribeirão Preto) and corn (Ribeirão Preto and Jaboticabal). Some other additional specimens collected on Sorghum bicolor (Lavras-MG) and Ilex paraguariensis (São Mateus do Sul, Cascavel-PR) were also studied. Illustrations obtained by SEM are given by first time.
Resumo:
Redescription and transference of the genus Fregolia Gounelle, 1911 to Callidiopini (Coleoptera, Cerambycidae). The genus Fregolia is transferred from Cleomenini Lacordaire, 1869 to Callidiopini Lacordaire, 1869. The genus and its type species, Fregolia listropteroides Gounelle, 1911, the only known species to the genus, are redescribed including characters of the mouth pieces, endosternites, wing venation, and male and female terminalia.
Resumo:
The genus Physopleurus Lacordaire, 1869 = Basitoxus (Parabasitoxus) Fragoso & Monné, 1995 syn. nov. is revised and redefined based on new characters. The following species are treated (in sequence that appear in the presented key): Physopleurus exiguus sp. nov. (Bolivia and Brazil), P. crassidens (Bates, 1869), P. longiscapus Lameere, 1912, P. rugosus (Gahan, 1894), P. tritomicros Lameere, 1912, P. seripierriae sp. nov. (Brazil, Mato Grosso), P. dohrnii Lacordaire, 1869, P. villardi (Lameere, 1902) = Aplagiognathus guatemalensis Casey, 1912 syn. nov., P. amazonicus (Fragoso & Monné, 1995) comb. nov., and. P. maillei (Audinet-Serville, 1832) comb. nov. The latter two species formerly in Basitoxus (Parabasitoxus) Fragoso & Monné, 1995. Illustrations of Basitoxus megacephalus (Germar, 1824) are included to allow comparisons with Physopleurus species. Key to species of Physopleurus is added.
Resumo:
This work, dedicated to the study of nesting habits of the species of the Neotropical genus Partamona Schwarz, is a sequence to the taxonomic revision recently published elsewhere. A total of 214 nests and nest aggregations of 18 species [Partamona epiphytophila Pedro & Camargo, 2003; P. testacea (Klug, 1807); P. mourei Camargo, 1980; P. vicina Camargo, 1980; P. auripennis Pedro & Camargo, 2003; P. combinata Pedro & Camargo, 2003; P. chapadicola Pedro & Camargo, 2003; P. nhambiquara Pedro & Camargo, 2003; P. ferreirai Pedro & Camargo, 2003; P. pearsoni (Schwarz, 1938); P. gregaria Pedro & Camargo, 2003; P. batesi Pedro & Camargo, 2003; P. ailyae Camargo, 1980; P. cupira (Smith, 1863); P. mulata Moure in Camargo, 1980; P. seridoensis Pedro & Camargo, 2003; P. criptica Pedro & Camargo, 2003; P. helleri (Friese, 1900)] were studied , including data about habitat, substrate, structural characteristics, construction materials and behavior. The descriptions of the nests are illustrated with 48 drawings. Partial data of the nests of P. bilineata (Say, 1837), P. xanthogastra Pedro & Camargo, 1997, P. orizabaensis (Strand, 1919), P. peckolti (Friese, 1901), P. aequatoriana Camargo, 1980, P. musarum (Cockerell, 1917) and P. rustica Pedro & Camargo, 2003 are also presented. Nests of P. grandipennis (Schwarz, 1951), P. yungarum Pedro & Camargo, 2003, P. subtilis Pedro & Camargo, 2003, P. vitae Pedro & Camargo, 2003, P. nigrior (Cockerell, 1925), P. sooretamae Pedro & Camargo, 2003 and P. littoralis Pedro & Camargo, 2003 are unknown. The species of Partamona build notable nest entrance structures, with special surfaces for incoming / exiting bees; some of them are extremely well-elaborated and ornamented, serving as flight orientation targets. All species endemic to western Ecuador to Mexico with known nesting habits (P. orizabaensis, P. peckolti, P. xanthogastra, P. bilineata, P. aequatoriana and P. musarum) build their nests in several substrates, non-associated with termitaria, such as cavities and crevices in walls, among roots of epiphytes and in bases of palm leaves, in abandoned bird nests, under bridges, and in other protected places, except P. peckolti that occasionally occupies termite nests. In South America, on the eastern side of the Andes, only P. epiphytophila and P. helleri nest among roots of epiphytes and other substrates, non-associated with termitaria. All other species studied (P. batesi, P. gregaria, P. pearsoni, P. ferreirai, P. chapadicola, P. nhambiquara, P. vicina, P. mourei, P. auripennis, P. combinata, P. cupira, P. mulata, P. ailyae, P. seridoensis, P. criptica and P. rustica) nest inside active termite nests, whether epigeous or arboreous. The only species that builds obligate subterranean nests, associated or not with termite or ant nests (Atta spp.) is P. testacea. Nests of Partamona have one vestibular chamber (autapomorphic for the genus) closely adjacent to the entrance, filled with a labyrinth of anastomosing pillars and connectives, made of earth and resins. One principal chamber exists for food and brood, but in some species one or more additional chambers are filled with food storage pots. In nests of P. vicina, there is one atrium or "false nest", between the vestibule and the brood chamber, which contains involucral sheaths, cells and empty pots. All structures of the nest are supported by permanent pillars made of earth and resins (another autapomorphy of the genus). The characters concerning nesting habits were coded and combined with morphological and biogeographic data, in order to hypothesize the evolutive scenario of the genus using cladistic methodology. The phylogenetic hypothesis presented is the following: (((((P. bilineata (P. grandipennis, P. xanthogastra)) (P. orizabaensis, P. peckolti)) (P. aequatoriana, P. musarum)) P. epiphytophila, P. yungarum, P. subtilis, P. vitae) (((((P. testacea (P. mourei, P. vicina)) (P. nigrior (P. auripennis, P. combinata))) (P. ferreirai (P. pearsoni (P. gregaria (P. batesi (P. chapadicola, P. nhambiquara)))))) ((((P. ailyae, P. sooretamae) P. cupira, P. mulata) P. seridoensis) P. criptica, P. rustica, P. littoralis)) P. helleri))). One area cladogram is presented. Dates of some vicariance / cladogenesis events are suggested. For bilineata / epiphytophila group, which inhabits the Southwestern Amazonia and the Chocó-Mexican biogeographical components, the origin of ancestral species is attributed to the Middle Miocene, when the transgressions of the Maracaibo and Paranense seas isolated the tropical northwestern South America from the eastern continental land mass. The next cladogenic event in the history of the bilineata / epiphytophila group is attributed to the Plio-Pleistocene, when the Ecuadorian Andes reached more than 3000 m, and the ancestral species was fragmented in two populations, one occupying the western Andes (ancestral species of the bilineata subgroup) and other the southwestern Amazon (ancestral species of the epiphytophila subgroup). Other aspects of the history of Partamona are also discussed.
Resumo:
Life-history traits and secondary sexual characters often demonstrate condition-dependence, and reproductive success thus ultimately appears to be determined by condition. Here we test the hypothesis that anti-parasite defence is condition-dependent and thus ultimately limits fitness. Animal hosts defend themselves against parasites by an efficient immune system that changes its activity level depending on level of infection. Since immune function is costly, as demonstrated by several field studies, we predicted that large immune defence organs should be maintained when the costs of an elevated immune response were reduced, or when the benefits were increased. Hence, the size of immune defence organs was predicted to increase in response to disease due to increased benefits of investment in immune function, and the; size was predicted to increase in response to high body condition because of reduced costs of investment in immune function. A comparative study of birds demonstrated that the size of the spleen was significantly increased among individuals suffering from parasitic infections and signs of disease as compared to healthy individuals. Furthermore, we found evidence for a positive association between spleen size and body condition. These findings are consistent with the hypothesised cost of immune function and hence a cost of anti-parasite defence.
Resumo:
The African Republic of Cape Verde consists of nine inhabited and several uninhabited volcanic islands set out in the Atlantic Ocean, about 500 km off the most westerly point of the African mainland and 1500 km south of the Canary Islands @g. 2). Most are rugged and mountainous; three (Sal, Maio, and Boavista) are flat, desert islands with sand beaches. Precipitation is meagre and very erratic; indeed Cape Verde can be seen as an island extension of the arid Sahel zone. Three species of the genus Phoenix are recorded from the Cape Verde Islands, P. akzctyli&a L., P. canariensis Chabaud and P. atlantica A. Chev. While the former two species have almost certainly been introduced by man, the latter is said to be endemic to the islands. Perhaps because the Cape Verdes are a particularly isolated set of islands or because palms are notoriously awkward to collect, little is known about the taxonomy, origins and natural history of this species. Phoenix atlantica was described by the French botanist Auguste Chevalier (1935a) following field exploration in the Cape Verdes in 1934 (Chevalier 1934: 1153). Chevalier provided limited diagnostic characters, defining the species as a clustering palm with 2-6 trunks, 5-15 m in height with dark green leaves 2-3 m in length. He considered it to be most similar in form to P. &ctyZzjkra and P. canariensis, possessing characters of both (Chevalier 1935a). Chevalier’s description indicates that Phoenix atlantica can be distinguished easily from P. canariensis by its clustering growth form (P. canariensis always has a single, stout trunk) and its shorter, straighter leaves. However, the differences between P. atlantica and P. dactylzjkra appear much more subtle. For example, while P. dacfylifera is usually observed as single-stemmed, when left undisturbed for a number of years it becomes clustering like the Cape Verde Phoenix, so this character on its own is unreliable. Further alleged distinctions include acuminate (P. atlantica) versus rounded (P. dactylzjkra) petals in the male flowers (Chevalier 1935a, b, Greuter 1967: 249, and Brochmann et al. 1997), fruit 2 cm long (P. atlantica) versus fruit more than 2.5 cm long (P. dactyl&a) (Brochmann et al.
Resumo:
An illustrated key to nymphs of Perlidae collected in streams of Central Amazonia, Brazil is provided. Three genera are reported for this region: Macrogynoplax Enderlein, Anacroneuria Klapálek and Enderleina Jewett. Additional diagnostic characters are provided for Enderleina nymphs.
Resumo:
Rhopalophorini is primarily a New World group. Of the 23 known genera, 19 were described from the Neotropical region. A cladistic analysis of the American genera was carried out with 91 morphological characters. The genera Ozodes Audinet-Serville and Lissozodes Bates, recently transferred to Necydalopsini, were included in the analysis in order to investigate their relationships with the Rhopalophorini. The results suggested that their shared similarities with the Rhopalophorini are symplesiomorphies at the level considered in the analysis, so they are maintained in Necydalopsini, and Neozodes Zajciw, indicated as the sister group of Ozodes, is herein transferred to this tribe. In the same way, Elaphopsis Audinet-Serville is transferred to Ibidionini. Rhopalophorini, as defined in the present work, is a monophyletic group and includes 17 American genera. Within Rhopalophorini, Argyrodines + Parozodes constitute the basalmost group, and Cycnoderus is the sister group of the two major clades formed, one by Ischionodonta, Disaulax, Cosmisoma, Closteropus and Gurubira, and the other, by Rhopalophora, Coremia, Merocoremia, Dirocoremia, Thalusia and Lathusia; the relationships of Rhopalophorella, Rhopalina and Muxbalia remain inconclusive. A phylogenetic classification of Rhopalophorini at the genus level is proposed.
Resumo:
The sphragis morphology of seven species of Actinote Hübner, [1819] from south Brazil are presented and discussed comparatively. Their significant differences and scales were revealed with SEM photographs. They can be usable as characters to identify species.
Resumo:
Neotropical Meliponini: the genus Partamona Schwarz, 1939 (Hymenoptera, Apidae). The systematics and biogeography of Partamona Schwarz, a Neotropical genus of stingless bees (Meliponini, Apinae, Apidae), are revised. Seventeen new species are described: P. epiphytophila sp. nov., P. subtilis sp. nov., P. nhambiquara sp. nov., P. batesi sp. nov., P. yungarum sp. nov., P. vitae sp. nov., P. ferreirai sp. nov., P. gregaria sp. nov., P. auripennis sp. nov., P. nigrilabris sp. nov., P. combinata sp. nov., P. chapadicola sp. nov., P. seridoensis sp. nov., P. littoralis sp. nov., P. criptica sp. nov., P. rustica sp. nov. and P. sooretamae sp. nov. Partamona pseudomusarum Camargo, 1980, is considered as junior synonym of P. vicina Camargo, 1980. Types of P. grandipennis (Schwarz, 1951), P. xanthogastra Pedro & Camargo, 1996-1997, P. pearsoni (Schwarz, 1938), P. ailyae Camargo, 1980, P. pseudomusarum, P. vicina, P. mulata Moure in Camargo, 1980, P. aequatoriana Camargo, 1980, P. mourei Camargo, 1980, P. peckolti, (Friese, 1901), P. testacea (Klug, 1807), P. helleri (Friese, 1900) and P. musarum (Cockerell, 1917) were examined. Lectotypes of P. orizabaensis (Strand, 1919), and P. cupira (Smith, 1863) are designated. An identification key for the species and drawings of morphological characters are presented. A phylogenetic hypothesis, based mainly on morphological characters is proposed. Four groups are defined, considering the shape of mandible of workers and sternum VII of males: bilineata / epiphytophila group (western Amazon to México), including P. bilineata (Say), P. grandipennis, P. xanthogastra P. orizabaensis P. peckolti P. epiphytophila sp. nov., P. subtilis sp. nov., P. nhambiquara sp. nov., P. batesi sp. nov., P. yungarum sp. nov. and P. vitae sp. nov.; musarum group (Central Brazil, north of South America to Central America), including P. musarum, P. aequatoriana, P. vicina, P. mourei, P. pearsoni, P. ferreirai sp. nov., P. gregaria sp. nov. and P. testacea; nigrior group (Central Brazil to northeast of South America) including P. nigrior (Cockerell, 1925), P. auripennis sp. nov., P. nigrilabris sp. nov., P. combinata sp. nov., P. chapadicola sp. nov., P. seridoensis sp. nov. and P. littoralis sp. nov., and cupira group (southeastern and Central Brazil), including P. cupira, P. mulata, P. ailyae, P. sooretamae sp. nov., P. criptica sp. nov., P. rustica sp. nov. and P. helleri. Some geographic distribution patterns, congruent with that of other Meliponini bees, are commented.
Resumo:
Panurginae have a pair of cuticular depressions in the second metasomal tergum, recognized as lateral foveae of the T2. These structures have been used as systematic and taxonomic characters, although their functions are yet unknown. We aimed a morphological analysis at lateral foveae of three species of Panurgillus Moure, 1998: P. vagabundus (Cockerell, 1918), P. reticulatus Schlindwein & Moure, 1998 e P. flavitarsis Schlindwein & Moure, 1998. The study of the external morphology showed that the lateral foveae of the T2 are evident among females, but in males they are undistinguishable or absent. The surface of the foveae is micropunctuated in all species. The histological analysis has shown that the region of the lateral foveae of the T2, of female and male of the three species, presented tegumentar specializations. The inner part showed an evident secretory epithelium recognized as Class I gland. The height of this secretory epithelium was not uniform, although the cellular features are similar independent of sex. We have not found any previous information regarding the presence of glands related to abdominal foveae in Panurginae species.
Resumo:
ABSTRACT: BACKGROUND: Adaptive radiation is the process by which a single ancestral species diversifies into many descendants adapted to exploit a wide range of habitats. The appearance of ecological opportunities, or the colonisation or adaptation to novel ecological resources, has been documented to promote adaptive radiation in many classic examples. Mutualistic interactions allow species to access resources untapped by competitors, but evidence shows that the effect of mutualism on species diversification can greatly vary among mutualistic systems. Here, we test whether the development of obligate mutualism with sea anemones allowed the clownfishes to radiate adaptively across the Indian and western Pacific oceans reef habitats. RESULTS: We show that clownfishes morphological characters are linked with ecological niches associated with the sea anemones. This pattern is consistent with the ecological speciation hypothesis. Furthermore, the clownfishes show an increase in the rate of species diversification as well as rate of morphological evolution compared to their closest relatives without anemone mutualistic associations. CONCLUSIONS: The effect of mutualism on species diversification has only been studied in a limited number of groups. We present a case of adaptive radiation where mutualistic interaction is the likely key innovation, providing new insights into the mechanisms involved in the buildup of biodiversity. Due to a lack of barriers to dispersal, ecological speciation is rare in marine environments. Particular life-history characteristics of clownfishes likely reinforced reproductive isolation between populations, allowing rapid species diversification.
Resumo:
Revision of the Leucosphyrus Group of Anopheles (Cellia) (Diptera, Culicidae). This is a comprehensive revision of 20 species of the Leucosphyrus Group of the Neomyzomyia Series of Anopheles (Cellia). Morphological description of the adults, male and female, male genitalia, pupa and fourth-instar larva are provided for each taxon in addition to bionomics, distribution data and systematic discussion for each species, including diagnostic characters. Identification keys for females and fourth-instar larvae are provided. When possible medical importance of each species is included. Illustrations of of the adults, fourth-instar larvae and pupae are provided. Distribution maps for each species are mainly based on the material examined; however, when possible published data were also used. Tables on adult character variations, fourth-instar larval and pupal setal branching are included as appendices. A neotype for An. takasagoensis Morishita and An. sulawesi Koesoemawinangoen, and a lectotype for An. balabacensis Baisas, are designated. The authorship of An. sulawesi previously cited as Waktoedi is corrected to Koesoemawinangoen.