988 resultados para MOLYBDENUM-DISULFIDE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mineral elements are essential to animal health, survival and production because they are part of physiological, structural, catalytic and regulatory organism functions. Therefore, they should be present in diet. However, these minerals when ingested in excessive doses due to errors in balancing mineral supplements and/or complete ration, intake of plants with high mineral concentration, resulting from addition of fertilizers, herbicides, insecticides and fungicides in pasture or tillage where plants and/or grains will be used to feed animals, decomposition of urban and industrial wastes, leaks and accidental spills of pollutants may result in accumulation of toxic mineral elements in the environment poisoning the animals and may lead them to death. However, toxic doses, physiological changes during poisoning, symptoms and mineral concentration in tissues of poisoned animals to confirm diagnosis are not completely known. Thus, this study reviews mineral element doses that some authors considered toxic for animals intake, as its concentration in tissues of poisoned animals and its physiological effects, symptoms, diagnostic procedures and treatment for poisoning by cadmium, lead, copper, chromium, iodine, manganese, molybdenum, selenium and zinc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) of Rocky Mountain elk in North America. Recent studies suggest that tissue and blood mineral levels may be valuable in assessing TSE infection in sheep and cattle. The objectives of this study were to examine baseline levels of copper, manganese, magnesium, zinc, selenium, and molybdenum in the brains of Rocky Mountain elk with differing prion genotypes and to assess the association of mineral levels with CWD infection. Elk with leucine at prion position 132 had significantly lower magnesium levels than elk with 2 copies of methionine. Chronic wasting disease-positive elk had significantly lower magnesium than control elk. The incorporation of manganese levels in addition to magnesium significantly refined explanatory ability, even though manganese alone was not significantly associated with CWD. This study demonstrated that mineral analysis may provide an additional disease correlate for assessing CWD risk, particularly in conjunction with genotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scorpion toxins targeting voltage-gated sodium (NaV) channels are peptides that comprise 6076 amino acid residues cross-linked by four disulfide bridges. These toxins can be divided in two groups (a and beta toxins), according to their binding properties and mode of action. The scorpion a-toxin Ts2, previously described as a beta-toxin, was purified from the venom of Tityus serrulatus, the most dangerous Brazilian scorpion. In this study, seven mammalian NaV channel isoforms (rNaV1.2, rNaV1.3, rNaV1.4, hNaV1.5, mNaV1.6, rNaV1.7 and rNaV1.8) and one insect NaV channel isoform (DmNaV1) were used to investigate the subtype specificity and selectivity of Ts2. The electrophysiology assays showed that Ts2 inhibits rapid inactivation of NaV1.2, NaV1.3, NaV1.5, NaV1.6 and NaV1.7, but does not affect NaV1.4, NaV1.8 or DmNaV1. Interestingly, Ts2 significantly shifts the voltage dependence of activation of NaV1.3 channels. The 3D structure of this toxin was modeled based on the high sequence identity (72%) shared with Ts1, another T. serrulatus toxin. The overall fold of the Ts2 model consists of three beta-strands and one a-helix, and is arranged in a triangular shape forming a cysteine-stabilized a-helix/beta-sheet (CSa beta) motif.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A correlation between lattice parameters, oxygen composition, and the thermoelectric and Hall coefficients is presented for single-crystal Li0.9Mo6O17, a quasi-one-dimensional (Q1D) metallic compound. The possibility that this compound is a compensated metal is discussed in light of a substantial variability observed in the literature for these transport coefficients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gomesin (Gm) was the first antimicrobial peptide (AMP) isolated from the hemocytes of a spider, the Brazilian mygalomorph Acanthoscurria gomesiana. We have been studying the properties of this interesting AMP, which also displays anticancer, antimalarial, anticryptococcal and anti-Leishmania activities. In the present study, the total syntheses of backbone-cyclized analogues of Gm (two disulfide bonds), [Cys(Acm)2,15]-Gm (one disulfide bond) and [Thr2,6,11,15,d-Pro9]-Gm (no disulfide bonds) were accomplished, and the impact of cyclization on their properties was examined. The consequence of simultaneous deletion of pGlu1 and Arg16-Glu-Arg18-NH2 on Gm antimicrobial activity and structure was also analyzed. The results obtained showed that the synthetic route that includes peptide backbone cyclization on resin was advantageous and that a combination of 20% DMSO/NMP, EDC/HOBt, 60?degrees C and conventional heating appears to be particularly suitable for backbone cyclization of bioactive peptides. The biological properties of the Gm analogues clearly revealed that the N-terminal amino acid pGlu1 and the amidated C-terminal tripeptide Arg16-Glu-Arg18-NH2 play a major role in the interaction of Gm with the target membranes. Moreover, backbone cyclization practically did not affect the stability of the peptides in human serum; it also did not affect or enhanced hemolytic activity, but induced selectivity and, in some cases, discrete enhancements of antimicrobial activity and salt tolerance. Because of its high therapeutic index, easy synthesis and lower cost, the [Thr2,6,11,15,d-Pro9]-Gm analogue remains the best active Gm-derived AMP developed so far; nevertheless, its elevated instability in human serum may limit its therapeutic potential. Copyright (c) 2012 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thimet oligopeptidase (EP24.15) is a cysteine-rich metallopeptidase containing fifteen Cys residues and no intra-protein disulfide bonds. Previous work on this enzyme revealed that the oxidative oligomerization of EP24.15 is triggered by S-glutathiolation at physiological GSSG levels (10-50 mu M) via a mechanism based on thiol-disulfide exchange. In the present work, our aim was to identify EP24.15 Cys residues that are prone to S-glutathiolation and to determine which structural features in the cysteinyl bulk are responsible for the formation of mixed disulfides through the reaction with GSSG and, in this particular case, the Cys residues within EP24.15 that favor either S-glutathiolation or inter-protein thiol-disulfide exchange. These studies were conducted by in silico structural analyses and simulations as well as site-specific mutation. S-glutathiolation was determined by mass spectrometric analyses and western blotting with anti-glutathione antibody. The results indicated that the stabilization of a thiolate sulfhydryl and the solvent accessibility of the cysteines are necessary for S-thiolation. The Solvent Access Surface analysis of the Cys residues prone to glutathione modification showed that the S-glutathiolated Cys residues are located inside pockets where the sulfur atom comes into contact with the solvent and that the positively charged amino acids are directed toward these Cys residues. The simulation of a covalent glutathione docking onto the same Cys residues allowed for perfect glutathione posing. A mutation of the Arg residue 263 that forms a saline bridge to the Cys residue 175 significantly decreased the overall S-glutathiolation and oligomerization of EP24.15. The present results show for the first time the structural requirements for protein S-glutathiolation by GSSG and are consistent with our previous hypothesis that EP24.15 oligomerization is dependent on the electron transfer from specific protonated Cys residues of one molecule to previously S-glutathionylated Cys residues of another one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coexistence between superconductivity and magnetism is reported for the KxMoO2-delta samples. Photoemission experiments show that the presence of Mo3+ ions is responsible for the weak ferromagnetic ordering observed in the KxMoO2-delta samples. Magnetic ordering temperature and superconducting critical temperature (T-C) ratio range from 7 to 18 in this compound. These are the highest ratios reported so far for a magnetic superconductor. T-C decreases with increasing potassium composition (x). For the first time, T-C near 10 K is reported in the K-Mo-O system. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757003]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, it was observed a straight relationship between the manipulation of the reduced glutathione (GSH)/glutathione disulfide (GSSG) ratio, nitric oxide emission and quality and number of early somatic embryos in Araucaria angustifolia, a Brazilian endangered native conifer. In low concentrations GSH (0.01 and 0.1 mM) is a potential NO scavenger in the culture medium. Furthermore, it can increase the number of early SE formed in cell suspension culture media in a few days. However, the maintenance in this low redox state lead to a loss of early somatic embryos polarization. In gelled culture medium, high levels of GSH (5 mM) allows the development of globular embryos presenting a high NO emission on embryo apex, stressing its importance in the differentiation and cell division. Taken together these results indicate that the modification of the embryogenic cultures redox state might be an effective strategy to develop more efficient embryogenic systems in A. angustifolia. (c) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unraveling the repertoire of venom toxins of Bothropoides pauloensis was assessed by snake venomics and venom gland transcriptomic surveys. Both approaches yielded converging overall figures, pointing to metalloproteinases (similar to 37%), PLA(2)s (26-32%), and vasoactive (bradykinin-potentiating) peptides (12-17%) as the major toxin classes. The high occurrence of SVMPs, PLA(2) molecules, vasoactive peptides, along with serine proteinases, explains the local and systemic effects observed in envenomations by B. pauloensis. Minor (<3%) C-type lectin, serine proteinase, L-amino acid oxidase, nerve growth factor, and CRISP molecules were also identified in the transcriptome and the proteome. Low abundance (0.3%) EST singletons coding for vascular endothelial growth factor (svVEGF), ohanin, hyaluronidase, and 5' nucleotidase were found only in the venom gland cDNA library. At the molecular level, the transcriptomic and proteomic datasets display low compositional concordance. In particular, although there is good agreement between transcriptome and proteome in the identity of BPPs, PLA(2) molecules and L-amino acid oxidase, both datasets strongly depart in their C-type lectin and SVMP complements. These data support the view that venom composition is influenced by transcriptional and translational mechanisms and emphasize the value of combining proteomic and transcriptomic approaches to acquire a more complete understanding of the toxinological profile and natural history of the snake venom. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structures and functional activities of metalloproteinases from snake venoms have been widely studied because of the importance of these molecules in envenomation. Batroxase, which is a metalloproteinase isolated from Bothrops atrox (Para) snake venom, was obtained by gel filtration and anion exchange chromatography. The enzyme is a single protein chain composed of 202 amino acid residues with a molecular mass of 22.9 kDa, as determined by mass spectrometry analysis, showing an isoelectric point of 7.5. The primary sequence analysis indicates that the proteinase contains a zinc ligand motif (HELGHNLGISH) and a sequence C164I165M166 motif that is associated with a "Met-turn" structure. The protein lacks N-glycosylation sites and contains seven half cystine residues, six of which are conserved as pairs to form disulfide bridges. The three-dimensional structure of Batroxase was modeled based on the crystal structure of BmooMP alpha-I from Bothrops moojeni. The model revealed that the zinc binding site has a high structural similarity to the binding site of other metalloproteinases. Batroxase presented weak hemorrhagic activity, with a MHD of 10 mu g, and was able to hydrolyze extracellular matrix components, such as type IV collagen and fibronectin. The toxin cleaves both a and beta-chains of the fibrinogen molecule, and it can be inhibited by EDTA. EGTA and beta-mercaptoethanol. Batroxase was able to dissolve fibrin clots independently of plasminogen activation. These results demonstrate that Batroxase is a zinc-dependent hemorrhagic metalloproteinase with fibrin(ogen)olytic and thrombolytic activity. Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a surface-enhanced Raman scattering (SERS) systematic investigation regarding the functionalization of gold (Au) and silver (Ag) nanoparticles with diphenyl dichalcogenides, i.e. diphenyl disulfide, diphenyl diselenide, and diphenyl ditelluride. Our results showed that, in all cases, functionalization took place with the cleavage of the chalcogenchalcogen bond on the surface of the metal. According to our density functional theory calculations, the molecules assumed a tilted orientation with respect to the metal surface for both Au and Ag, in which the angle of the phenyl ring relative to the metallic surface decreased as the mass of the chalcogen atom increased. The detected differences in the ordinary Raman and SERS spectra were assigned to the distinct stretching frequencies of the carbonchalcogen bond and its relative contribution to the ring vibrational modes. In addition, the SERS spectra showed that there was no significant interaction between the phenyl ring and the surface, in agreement with the tilted orientation observed from our density functional theory calculations. The results described herein indicate that diphenyl dichalcogenides can be successfully employed as starting materials for the functionalization of Au nanoparticles with organosulfur, organoselenium, and organotellurium compounds. On the other hand, diphenyl disulfide and diphenyl diselenide could be employed for the functionalization of Ag nanoparticles, while the partial oxidation of the organotellurium unit could be detected on the Ag surface. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we employ the state of the art pseudopotential method, within a generalized gradient approximation to the density functional theory, to investigate the adsorption process of benzenethiol and diphenyl disulfide with the silicon (001) surface. A direct comparison of different adsorption structures with Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) allow us to identify that benzenethiol and diphenyl disulfide dissociatively adsorb on the silicon surface. In addition, theoretically obtained data suggests that the C6H5SH:Si(001) presents a higher Schottky barrier height contact when compared to other similar aromatic molecules.