968 resultados para MODIFIED PT(111) ELECTRODES
Resumo:
Two new cyclohexadepsipeptides have been isolated from the fungus Isaria. Fungal growth in solid media yielded hyphal strands from which peptide fractions were readily isolable by organic-solvent extraction. Two novel cyclodepsipeptides, isaridin A and isaridin B, have been isolated by reverse-phase HPLC, and characterized by ESI-MS and 1H-NMR. Single crystals of both peptides have been obtained, and their 3D structures were elucidated by X-ray diffraction. The isaridins contain several unusual amino acid residues. The sequences are cyclo(β-Gly-HyLeu-Pro-Phe-NMeVal-NMePhe) and cyclo(β-Gly-HyLeu-β-MePro-Phe-NMeVal-NMePhe), where NMeVal is N-methylvaline, NMePhe N-methylphenylalanine, and HyLeu hydroxyleucine (=2-hydroxy-4-methylpentanoic acid). The two peptides differ from one another at residue 3, isaridin A having an (S)-proline at this position, while β-methyl-(S)-proline (=(2S,3S)-2,3,4,5-tetrahydro-3-methyl-1H-pyrrole-2-carboxylic acid) is found in isaridin B. The solid-state conformations of both cyclic depsipeptides are characterized by the presence of two cis peptide bonds at HyLeu(2)-Pro(3)/HyLeu(2)-β-MePro(3) and NMeVal(5)-NMePhe(6), respectively. In isaridin A, a strong intramolecular H-bond is observed between Phe(4)CO⋅⋅⋅HNβ-Gly(1), and a similar, but weaker, interaction is observed between β-Gly(1)CO⋅⋅⋅HNPhe(4). In contrast, in isaridin B, only a single intramolecular H-bond is observed between β-Gly(1)CO⋅⋅⋅HNPhe(4
Resumo:
A numerical solution for the transient temperature distribution in a cylindrical disc heated on its top surface by a circular source is presented. A finite difference form of the governing equations is solved by the Alternating Direction Implicit (ADI) time marching scheme. This solution has direct applications in analyzing transient electron beam heating of target materials as encountered in the prebreakdown current enhancement and consequent breakdown in high voltage vacuum gaps stressed by alternating and pulsed voltages. The solution provides an estimate of the temperature for pulsed electron beam heating and the size of thermally activated microparticles originating from anode hot spots. The calculated results for a typical 45kV (a.c.) electron beam of radius 2.5 micron indicate that the temperature of such spots can reach melting point and could give rise to microparticles which could initiate breakdown.
Resumo:
Open-circuit potential—time transients during the discharge of alkaline porous iron electrodes at various states-of-charge have been studied. From this, it has been possible to arrive at a correlation between the parameters of self-discharge kinetics of the electrode and observed open-circuit potential—recovery time constants. The study provides a method of estimate the state-of-charge of the rechargeable iron electrodes. As a hydrogen evolution reaction inevitably occurs on alkaline iron electrodes, the kinetics of the reaction have also been investigated.
Resumo:
The recombination and the faradaic fluxes are shown to be sensitive to the location of a single level recombination center, when it is located near the band edges. As the surface level is shifted deeper into the band gap from either of the band edges, the back emission terms are dominated by electron capture and hole capture terms, and the occupancy of the surface level is no longer determined by its location in the band gap. However, when one of the back emission terms determines the surface state occupancy, it is shown that there exists a simple relation between the value of the surface level and the recombination and the faradaic fluxes respectively. Expressions to this effect are derived and verified in the case of the recombination flux, which characterized by the potential at which it attains its maximum value. For the faradaic flux the results are qualitative.
Resumo:
High-quality GaN epilayers were grown on Si (1 1 1) substrates by molecular beam epitaxy using a new growth process sequence which involved a substrate nitridation at low temperatures, annealing at high temperatures, followed by nitridation at high temperatures, deposition of a low-temperature buffer layer, and a high-temperature overgrowth. The material quality of the GaN films was also investigated as a function of nitridation time and temperature. Crystallinity and surface roughness of GaN was found to improve when the Si substrate was treated under the new growth process sequence. Micro-Raman and photoluminescence (PL) measurement results indicate that the GaN film grown by the new process sequence has less tensile stress and optically good. The surface and interface structures of an ultra thin silicon nitride film grown on the Si surface are investigated by core-level photoelectron spectroscopy and it clearly indicates that the quality of silicon nitride notably affects the properties of GaN growth. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Photocatalytic degradation of municipal wastewater was investigated using reagent grade TiO2 and modified neodymium doped TiO2 hybrid nanoparticles. For the first time, surface modification of Nd3+ doped TiO2 hybrid nanoparticles were carried out with n-butylamine as surface modifier under mild hydrothermal conditions. The modified nanoparticles obtained were characterized by Powder XRD, FTIR, DLS, TEM, BET surface area, zeta potential and UV-Vis Spectroscopy. The characterization results indicated better morphology, particle size distribution and low agglomeration of the nanoparticles synthesized. It was found that photodegradation of wastewater using surface modified neodymium doped TiO2 nanoparticles was more compared to pure TiO2, which can be attributed to the doping and modification with n-butylamine.
Resumo:
Addition of boron in small quantities to various titanium alloys have shown significant improvement in mechanical behavior of materials. In the present study, electron back-scatter diffraction (EBSD) techniques have been applied to investigate the deformation microstructure evolution in boron modified two-phase titanium alloy Ti-6Al-4V. The alloy was hot compressed at 750 degrees C up to 50% height reduction at two different strain rates (10(-3) s(-1) and 1 s(-1)). The EBSD analyses indicated significant differences in deformed microstructure of the base alloy and the alloy containing boron. A strong subgrain formation tendency was observed along with inhomogeneous distribution of dislocations inside large a colonies of Ti64. In contrast, a colonies were relatively strain free for Ti64 + B, with more uniform dislocation density distribution. The observed difference is attributed to microstructural modifications viz, grain size refinement and presence of TiB particles at grain boundary produced due to boron addition. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Carbon-supported Pt-TiO2 (Pt-TiO2/C) catalyst with varying atomic ratio of Pt to Ti, namely, 1: 1, 2: 1, and 3: 1, is prepared by sol-gel method and its electrocatalytic activity toward oxygen-reduction reaction (ORR) is evaluated for the application in polymer electrolyte fuel cells (PEFCs). The optimum atomic ratio of Pt to Ti in Pt-TiO2/C and annealing temperature are established by cyclic voltammetry and fuel-cell-polarization studies. Pt-TiO2/C annealed at 750 degrees C with Pt and Ti in atomic ratio of 2: 1, namely, 750 Pt-TiO2/C (2: 1), shows enhanced electrocatalytic activity toward ORR. It is found that the incorporation of TiO2 with Pt ameliorates both electrocatalytic activity and stability of cathode in relation to pristine Pt cathode, currently being used in PEFCs. A power density of 0.75 W/cm(2) is achieved at 0.6 V for the PEFC with 750 Pt-TiO2/C (2: 1) as compared with 0.62 W/cm(2) at 0.6 V achieved with the PEFC comprising Pt/C as cathode catalyst while operating under identical conditions. Interestingly, carbon-supported Pt-TiO2 cathode exhibits only 6% loss in electrochemical surface area after 5000 potential cycles while it is as high as 25% for Pt/C. DOI: 10.1115/1.4002466]
Resumo:
Potential transients are obtained by using “Padé approximants” (an accurate approximation procedure valid globally — not just perturbatively) for all amplitudes of concentration polarization and current densities. This is done for several mechanistic schemes under constant current conditions. We invert the non-linear current-potential relationship in the form (using the Lagrange or the Ramanujan method) of power series appropriate to the two extremes, namely near reversible and near irreversible. Transforming both into the Pad́e expressions, we construct the potential-time profile by retaining whichever is the more accurate of the two. The effectiveness of this method is demonstrated through illustrations which include couplings of homogeneous chemical reactions to the electron-transfer step.
Resumo:
The chemical potential of oxygen corresponding to the iron-rutile-ilmenite (IRI) and iron-ilmenite-ulvospinel (IIU) equilibria has been measured employing solid-state galvanic cells,$$Pt, Fe + TiO_2 + FeTiO_3 //(Y_2 O_3 ) ZrO_2 //Fe + FeO, Pt$$ and $${\text{Pt, Fe + FeTiO}}_{\text{3}} {\text{ + Fe}}_{\text{2}} {\text{TiO}}_{\text{4}} {\text{//(Y}}_{\text{2}} {\text{0}}_{\text{3}} {\text{) ZrO}}_{\text{2}} {\text{//Fe + FeO, Pt}}$$ in the temperature range of 875 to 1275 K and 900 to 1373 K, respectively. The cells are written such that the right-hand electrodes are positive. The electromotive force (emf) of both the cells was found to be reversible and to vary linearly with temperature over the entire range of measurement. The chemical potential of oxygen for IRI equilibrium is represented by Δμo2(IRI) = -550,724 - 29.445T + 20.374T InT(±210) J mol−1 (875 <-T<- 1184 K) = -620,260 + 369.593T - 27.716T lnT(±210) J mol−1 (1184 <-T<- 1275 K) and that for IIU equilibrium by Δμo2(IIU) = -501,800 - 49.035T + 20.374T lnT(±210) J mol−1 (900 <-T<- 1184 K) = -571,336 + 350.003T− 27.716T lnT(=−210) J mol-1 (1184 <-T<- 1373 K) The standard Gibbs energy changes for IRI and IIU equilibria have been deduced from the measured oxygen potentials. Since ilmenite contains small amounts of Ti³+ ions, a correction for the activity of FeTiO3 has been incorporated by assuming ideal mixing on each cation sublattice in the FeTiO3-Ti2O3 system. Similarly, the ulvospinel contains some Fe³+ ions and a correction for the activity of Fe2TiO4 has been included by modeling the Fe2TiO4-Fe3O4 system. The third-law analysis of the results obtained for IRI equilibrium gives ΔH 298 0 = -575 (±1.0) kJ mol-1 and for IIU equilibrium yields ΔH 298 0 = -523.7 (±0.7) kJ mol−1}. The present results suggest that Fe2+ and Ti4+ cations mix almost ideally on the octahedral site of spinel lattice in Fe2TiO4, giving rise to a configurational contribution of 2R In 2 (11.5256 J mol-1 K-1) to the entropy of Fe2TiO4.
Resumo:
The crystal structure of 2',3'-O-isopropylidene inosine shows a number of interesting features. The four independent molecules in the asymmetric unit exhibit significant conformational variations. Ribose puckers fall in the O(4')-exo region, unfavourable in unsubstituted nucleosides. Hypoxanthine bases show base-pairing (I.I) in a manner analogous to the guanine self pairs (G.G) in 2',3'-O-isopropylidene guanosine but with a C(2)-H…O(6) hydrogen bond instead of N(2)-H…O(6).
Resumo:
New materials in concrete constructions have been widely used to improve various properties such as impact resistance, strength and durability. Polymer modified concrete is one of the new materials which has been developed for potential application in the construction industry. This Paper describes the use of polymer latex for foundation blocks subjected to dynamic loads. Experiments were conducted using ordinary concrete and latex modified concrete footings of three different thicknesses, for three static loads at four excitation levels. Experimental results have revealed that the amplitude of resonance is reduced considerably in the latex modified concrete footings.
Resumo:
Catalytic activities of some transition metal-phthalocyanine complexes towards electroreduction of molecular oxygen are examined on Nafion®-bound and bare porous carbon electrodes in 2.5 M H2SO4 electrolyte. It is found that these metal complexes exhibit better catalytic activities towards oxygen reduction with the Nafion®-bound electrodes.
Resumo:
Small angle X-ray scattering (SAXS) studies of poly2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) with varying conjugation, and polyethylene dioxythiophene complexed with polystyrene sulfonate (PEDOT-PSS) in different solvents have shown the importance of the role of pi-electron conjugation and solvent-chain interactions in controlling the chain conformation and assembly. In MEH-PPV, by increasing the extent of conjugation from 30 to 100%, the persistence length (l(p)) increases from 20 to 66 angstrom. Moreover, a pronounced second peak in the pair distribution function has been observed in the fully conjugated chain, at larger length scales. This feature indicates that the chain segments tend to self-assemble as the conjugation along the chain increases. In the case of PEDOT-PSS, the chains undergo solvent induced expansion and enhanced chain organization. The clusters formed by chains are better correlated in dimethyl sulfoxide (DMSO) solution than water, as observed in the scattered intensity profiles. The values of radius of gyration and the exponent (water: 2.6, DMSO: 2.31) of power-law decay, obtained from the unified scattering function (Beaucage) analysis, give evidence for chain expansion from compact (in water) to an extended coil in DMSO solutions, which is consistent with the Kratky plot analysis. The mechanism of this transition and the increase in dc conductivity of PEDOT-PSS in DMSO solution are discussed. The onset frequency for the increase in ac conduction, as well as its temperature dependence, probes the extent of the connectivity in the PEDOT-PSS system. The enhanced charge transport in PEDOT-PSS in DMSO is attributed to the extended chain conformation, as observed in the SAXS results.