936 resultados para MODEL ANALYSIS
Resumo:
ABSTRACT OBJECTIVE To estimate the prevalence of hypertension among adolescent Brazilian students. METHODS A systematic review of school-based cross-sectional studies was conducted. The articles were searched in the databases MEDLINE, Embase, Scopus, LILACS, SciELO, Web of Science, CAPES thesis database and Trip Database. In addition, we examined the lists of references of relevant studies to identify potentially eligible articles. No restrictions regarding publication date, language, or status applied. The studies were selected by two independent evaluators, who also extracted the data and assessed the methodological quality following eight criteria related to sampling, measuring blood pressure, and presenting results. The meta-analysis was calculated using a random effects model and analyses were performed to investigate heterogeneity. RESULTS We retrieved 1,577 articles from the search and included 22 in the review. The included articles corresponded to 14,115 adolescents, 51.2% (n = 7,230) female. We observed a variety of techniques, equipment, and references used. The prevalence of hypertension was 8.0% (95%CI 5.0–11.0; I2 = 97.6%), 9.3% (95%CI 5.6–13.6; I2 = 96.4%) in males and 6.5% (95%CI 4.2–9.1; I2 = 94.2%) in females. The meta-regression failed to identify the causes of the heterogeneity among studies. CONCLUSIONS Despite the differences found in the methodologies of the included studies, the results of this systematic review indicate that hypertension is prevalent in the Brazilian adolescent school population. For future investigations, we suggest the standardization of techniques, equipment, and references, aiming at improving the methodological quality of the studies.
Resumo:
One fundamental idea of service-oriented computing is that applications should be developed by composing already available services. Due to the long running nature of service interactions, a main challenge in service composition is ensuring correctness of transaction recovery. In this paper, we use a process calculus suitable for modelling long running transactions with a recovery mechanism based on compensations. Within this setting, we discuss and formally state correctness criteria for compensable processes compositions, assuming that each process is correct with respect to transaction recovery. Under our theory, we formally interpret self-healing compositions, that can detect and recover from faults, as correct compositions of compensable processes. Moreover, we develop an automated verification approach and we apply it to an illustrative case study.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
An improved class of Boussinesq systems of an arbitrary order using a wave surface elevation and velocity potential formulation is derived. Dissipative effects and wave generation due to a time-dependent varying seabed are included. Thus, high-order source functions are considered. For the reduction of the system order and maintenance of some dispersive characteristics of the higher-order models, an extra O(mu 2n+2) term (n ??? N) is included in the velocity potential expansion. We introduce a nonlocal continuous/discontinuous Galerkin FEM with inner penalty terms to calculate the numerical solutions of the improved fourth-order models. The discretization of the spatial variables is made using continuous P2 Lagrange elements. A predictor-corrector scheme with an initialization given by an explicit RungeKutta method is also used for the time-variable integration. Moreover, a CFL-type condition is deduced for the linear problem with a constant bathymetry. To demonstrate the applicability of the model, we considered several test cases. Improved stability is achieved.
Resumo:
Crossed classification models are applied in many investigations taking in consideration the existence of interaction between all factors or, in alternative, excluding all interactions, and in this case only the effects and the error term are considered. In this work we use commutative Jordan algebras in the study of the algebraic structure of these designs and we use them to obtain similar designs where only some of the interactions are considered. We finish presenting the expressions of the variance componentes estimators.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova da Lisboa para obtenção do grau de Mestre em Engenharia e Gestão Industrial (MEGI)
Resumo:
In this paper a modified version of the classical Van der Pol oscillator is proposed, introducing fractional-order time derivatives into the state-space model. The resulting fractional-order Van der Pol oscillator is analyzed in the time and frequency domains, using phase portraits, spectral analysis and bifurcation diagrams. The fractional-order dynamics is illustrated through numerical simulations of the proposed schemes using approximations to fractional-order operators. Finally, the analysis is extended to the forced Van der Pol oscillator.
Resumo:
The latest medical diagnosis devices enable the performance of e-diagnosis making the access to these services easier, faster and available in remote areas. However this imposes new communications and data interchange challenges. In this paper a new XML based format for storing cardiac signals and related information is presented. The proposed structure encompasses data acquisition devices, patient information, data description, pathological diagnosis and waveform annotation. When compared with similar purpose formats several advantages arise. Besides the full integrated data model it may also be noted the available geographical references for e-diagnosis, the multi stream data description, the ability to handle several simultaneous devices, the possibility of independent waveform annotation and a HL7 compliant structure for common contents. These features represent an enhanced integration with existent systems and an improved flexibility for cardiac data representation.
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática
Resumo:
In an attempt to be as close as possible to the infected and treated patients of the endemic areas of schistosomiasis (S. mansoni) and in order to achieve a long period of follow-up, mice were repeatedly infected with a low number of cercariae. Survival data and histological variables such as schistosomal granuloma, portal changes, hepatocellular necrosis, hepatocellular regeneration, schistosomotic pigment, periductal fibrosis and chiefly bile ducts changes were analysed in the infected treated and non treated mice. Oxamniquine chemotherapy in repeatedly infected mice prolonged survival significantly when compared to non-treated animals (chi-square 9.24, p = 0.0024), thus confirming previous results with a similar experimental model but with a shorter term follow-up. Furthermore, mortality decreased rapidly after treatment suggesting an abrupt reduction in the severity of hepatic lesions. A morphological and immunohistochemical study of the liver was carried out. Portal fibrosis, with a pattern resembling human Symmers fibrosis was present at a late phase in the infected animals. Bile duct lesions were quite close to those described in human Mansonian schistosomiasis. Schistosomal antigen was observed in one isolated altered bile duct cell. The pathogenesis of the bile duct changes and its relation to the parasite infection and/or their antigens are discussed.
Resumo:
Proceedings of the Information Technology Applications in Biomedicine, Ioannina - Epirus, Greece, October 26-28, 2006
Resumo:
The most common techniques for stress analysis/strength prediction of adhesive joints involve analytical or numerical methods such as the Finite Element Method (FEM). However, the Boundary Element Method (BEM) is an alternative numerical technique that has been successfully applied for the solution of a wide variety of engineering problems. This work evaluates the applicability of the boundary elem ent code BEASY as a design tool to analyze adhesive joints. The linearity of peak shear and peel stresses with the applied displacement is studied and compared between BEASY and the analytical model of Frostig et al., considering a bonded single-lap joint under tensile loading. The BEM results are also compared with FEM in terms of stress distributions. To evaluate the mesh convergence of BEASY, the influence of the mesh refinement on peak shear and peel stress distributions is assessed. Joint stress predictions are carried out numerically in BEASY and ABAQUS®, and analytically by the models of Volkersen, Goland, and Reissner and Frostig et al. The failure loads for each model are compared with experimental results. The preparation, processing, and mesh creation times are compared for all models. BEASY results presented a good agreement with the conventional methods.
Resumo:
In this study, the concentration probability distributions of 82 pharmaceutical compounds detected in the effluents of 179 European wastewater treatment plants were computed and inserted into a multimedia fate model. The comparative ecotoxicological impact of the direct emission of these compounds from wastewater treatment plants on freshwater ecosystems, based on a potentially affected fraction (PAF) of species approach, was assessed to rank compounds based on priority. As many pharmaceuticals are acids or bases, the multimedia fate model accounts for regressions to estimate pH-dependent fate parameters. An uncertainty analysis was performed by means of Monte Carlo analysis, which included the uncertainty of fate and ecotoxicity model input variables, as well as the spatial variability of landscape characteristics on the European continental scale. Several pharmaceutical compounds were identified as being of greatest concern, including 7 analgesics/anti-inflammatories, 3 β-blockers, 3 psychiatric drugs, and 1 each of 6 other therapeutic classes. The fate and impact modelling relied extensively on estimated data, given that most of these compounds have little or no experimental fate or ecotoxicity data available, as well as a limited reported occurrence in effluents. The contribution of estimated model input variables to the variance of freshwater ecotoxicity impact, as well as the lack of experimental abiotic degradation data for most compounds, helped in establishing priorities for further testing. Generally, the effluent concentration and the ecotoxicity effect factor were the model input variables with the most significant effect on the uncertainty of output results.
Resumo:
“Many-core” systems based on a Network-on-Chip (NoC) architecture offer various opportunities in terms of performance and computing capabilities, but at the same time they pose many challenges for the deployment of real-time systems, which must fulfill specific timing requirements at runtime. It is therefore essential to identify, at design time, the parameters that have an impact on the execution time of the tasks deployed on these systems and the upper bounds on the other key parameters. The focus of this work is to determine an upper bound on the traversal time of a packet when it is transmitted over the NoC infrastructure. Towards this aim, we first identify and explore some limitations in the existing recursive-calculus-based approaches to compute the Worst-Case Traversal Time (WCTT) of a packet. Then, we extend the existing model by integrating the characteristics of the tasks that generate the packets. For this extended model, we propose an algorithm called “Branch and Prune” (BP). Our proposed method provides tighter and safe estimates than the existing recursive-calculus-based approaches. Finally, we introduce a more general approach, namely “Branch, Prune and Collapse” (BPC) which offers a configurable parameter that provides a flexible trade-off between the computational complexity and the tightness of the computed estimate. The recursive-calculus methods and BP present two special cases of BPC when a trade-off parameter is 1 or ∞, respectively. Through simulations, we analyze this trade-off, reason about the implications of certain choices, and also provide some case studies to observe the impact of task parameters on the WCTT estimates.
Resumo:
In this article we provide homotopy solutions of a cancer nonlinear model describing the dynamics of tumor cells in interaction with healthy and effector immune cells. We apply a semi-analytic technique for solving strongly nonlinear systems – the Step Homotopy Analysis Method (SHAM). This algorithm, based on a modification of the standard homotopy analysis method (HAM), allows to obtain a one-parameter family of explicit series solutions. By using the homotopy solutions, we first investigate the dynamical effect of the activation of the effector immune cells in the deterministic dynamics, showing that an increased activation makes the system to enter into chaotic dynamics via a period-doubling bifurcation scenario. Then, by adding demographic stochasticity into the homotopy solutions, we show, as a difference from the deterministic dynamics, that an increased activation of the immune cells facilitates cancer clearance involving tumor cells extinction and healthy cells persistence. Our results highlight the importance of therapies activating the effector immune cells at early stages of cancer progression.