967 resultados para MICELLAR ELECTROKINETIC CHROMATOGRAPHY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existing instrumental techniques must be adaptable to the analysis of novel explosives if science is to keep up with the practices of terrorists and criminals. The focus of this work has been the development of analytical techniques for the analysis of two types of novel explosives: ascorbic acid-based propellants, and improvised mixtures of concentrated hydrogen peroxide/fuel. In recent years, the use of these explosives in improvised explosive devices (IEDs) has increased. It is therefore important to develop methods which permit the identification of the nature of the original explosive from post-blast residues. Ascorbic acid-based propellants are low explosives which employ an ascorbic acid fuel source with a nitrate/perchlorate oxidizer. A method which utilized ion chromatography with indirect photometric detection was optimized for the analysis of intact propellants. Post-burn and post-blast residues if these propellants were analyzed. It was determined that the ascorbic acid fuel and nitrate oxidizer could be detected in intact propellants, as well as in the post-burn and post-blast residues. Degradation products of the nitrate and perchlorate oxidizers were also detected. With a quadrupole time-of-flight mass spectrometer (QToFMS), exact mass measurements are possible. When an HPLC instrument is coupled to a QToFMS, the combination of retention time with accurate mass measurements, mass spectral fragmentation information, and isotopic abundance patterns allows for the unequivocal identification of a target analyte. An optimized HPLC-ESI-QToFMS method was applied to the analysis of ascorbic acid-based propellants. Exact mass measurements were collected for the fuel and oxidizer anions, and their degradation products. Ascorbic acid was detected in the intact samples and half of the propellants subjected to open burning; the intact fuel molecule was not detected in any of the post-blast residue. Two methods were optimized for the analysis of trace levels of hydrogen peroxide: HPLC with fluorescence detection (HPLC-FD), and HPLC with electrochemical detection (HPLC-ED). Both techniques were extremely selective for hydrogen peroxide. Both methods were applied to the analysis of post-blast debris from improvised mixtures of concentrated hydrogen peroxide/fuel; hydrogen peroxide was detected on variety of substrates. Hydrogen peroxide was detected in the post-blast residues of the improvised explosives TATP and HMTD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive forensic investigation of sensitive ecosystems in the Everglades Area is presented. Assessing the background levels of contamination in these ecosystems represents a vital resource to build up forensic evidence required to enforce future environmental crimes within the studied areas. This investigation presents the development and validation of a fractionation and isolation method for two families of herbicides commonly applied in the vicinity of the study area, including phenoxy acids like 2,4-D, MCPA, and silvex; as well as the most common triazine-based herbicides like atrazine, prometyne, simazine and related metabolites like DIA and DEA. Accelerated solvent extraction (ASE) and solid phase extraction (SPE) were used to isolate the analytes from abiotic matrices containing large amounts of organic material. Atmospheric-pressure ionization (API) with electrospray ionization in negative mode (ESP-), and Chemical Ionization in the positive mode (APCI+) were used to perform the characterization of the herbicides of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We quantified pigment biomarkers by high performance liquid chromatography (HPLC) to obtain a broad taxonomic classification of microphytobenthos (MPB) (i.e. identification of dominant taxa). Three replicate sediment cores were collected at 0, 50 and 100 m along transects 5-9 in Heron Reef lagoon (n=15) (Fig. 1). Transects 1-4 could not be processed because the means to have the samples analysed by HPLC were not available at the time of field data collection. Cores were stored frozen and scrapes taken from the top of each one and placed in cryovials immersed in dry ice. Samples were sent to the laboratory (CSIRO Marine and Atmospheric Research, Hobart, Australia) where pigments were extracted with 100% acetone during fifteen hours at 4°C after vortex mixing (30 seconds) and sonication (15 minutes). Samples were then centrifuged and filtered prior to the analysis of pigment composition with a Waters - Alliance HPLC system equipped with a photo-diode array detector. Pigments were separated using a Zorbax Eclipse XDB-C8 stainless steel 150 mm x 4.6 mm ID column with 3.5 µm particle size (Agilent Technologies) and a binary gradient system with an elevated column temperature following a modified version of the Van Heukelem and Thomas (2001) method. The separated pigments were detected at 436 nm and identified against standard spectra using Waters Empower software. Standards for HPLC system calibration were obtained from Sigma (USA) and DHI (Denmark).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capillary electrophoresis (CE) is a modern analytical technique, which is electrokinetic separation generated by high voltage and taken place inside the small capillaries. In this dissertation, several advanced capillary electrophoresis methods are presented using different approaches of CE and UV and mass spectrometry are utilized as the detection methods. Capillary electrochromatography (CEC), as one of the CE modes, is a recent developed technique which is a hybrid of capillary electrophoresis and high performance liquid chromatography (HPLC). Capillary electrochromatography exhibits advantages of both techniques. In Chapter 2, monolithic capillary column are fabricated using in situ photoinitiation polymerization method. The column was then applied for the separation of six antidepressant compounds. Meanwhile, a simple chiral separation method is developed and presented in Chapter 3. Beta cycodextrin was utilized to achieve the goal of chiral separation. Not only twelve cathinone analytes were separated, but also isomers of several analytes were enantiomerically separated. To better understand the molecular information on the analytes, the TOF-MS system was coupled with the CE. A sheath liquid and a partial filling technique (PFT) were employed to reduce the contamination of MS ionization source. Accurate molecular information was obtained. It is necessary to propose, develop, and optimize new techniques that are suitable for trace-level analysis of samples in forensic, pharmaceutical, and environmental applications. Capillary electrophoresis (CE) was selected for this task, as it requires lower amounts of samples, it simplifies sample preparation, and it has the flexibility to perform separations of neutral and charged molecules as well as enantiomers. Overall, the study demonstrates the versatility of capillary electrophoresis methods in forensic, pharmaceutical, and environmental applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plantaginis Semen is commonly used in traditional medicine to treat edema, hypertension, and diabetes. The commercially available Plantaginis Semen in China mainly comes from three species. To clarify the chemical composition and distinct different species of Plantaginis Semen, we established a metabolite profiling method based on ultra high performance liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry coupled with elevated energy technique. A total of 108 compounds, including phenylethanoid glycosides, flavonoids, guanidine derivatives, terpenoids, organic acids, and fatty acids, were identified from Plantago asiatica L., P. depressa Willd., and P. major L. Results showed significant differences in chemical components among the three species, particularly flavonoids. This study is the first to provide a comprehensive chemical profile of Plantaginis Semen, which could be involved into the quality control, medication guide, and developing new drug of Plantago seeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Residents of certain areas of Tanzania are exposed to mycotoxins through the consumption of contaminated maize based foods. In this study, 101 maize based porridge samples were collected from villages of Nyabula, Kikelelwa and Kigwa located in different agro-ecological zones of Tanzania. The samples were collected at three time points (time point 1, during maize harvest; time point 2, 6 months after harvest; time point 3, 12 months after harvest) over a 1-year period. Ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was used to detect and quantify 9 mycotoxins: aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2), fumonisin B1 (FB1), fumonisin B2 (FB2), deoxynivalenol (DON), ochratoxin A (OTA) and zearaleneone (ZEN) in the samples following a QuEChERS extraction method. Eighty two percent of samples were co-contaminated with more than one group of mycotoxins. Fumonisins (FB1 + FB2) had the highest percentage occurrence in all 101 samples (100%) whereas OTA had the lowest (5%). For all three villages the mean concentration of FB1 was lowest in samples taken from time point 2. Conversely, In Kigwa village there was a distinct trend that AFB1 mean concentration was highest in samples taken from time point 2. DON concentration did not differ greatly between time points but the percentage occurrence varied between villages, most notably in Kigwa where 0% of samples tested positive. ZEN occurrence and mean concentration was highest in Kikelelwa. The results suggest that mycotoxin contamination in maize can vary based on season and agro-ecological zones. The high occurrence of multiple mycotoxins found in maize porridge, a common weaning food in Tanzania, presents a potential increase in the risk of exposure and significant health implications in children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical speciation in foodstuffs is of uttermost importance since it is nowadays recognized that both toxicity and bioavailability of an element depend on the chemical form in which the element is present. Regarding arsenic, inorganic species are classified as carcinogenic while organic arsenic, such as arsenobetaine (AsB) or arsenocholine (AsC), is considered less toxic or even non-toxic. Coupling a High Performance Liquid Chromatographer (HPLC) with an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) combines the power of separation of the first with the selectivity and sensitivity of the second. The present work aims at developing a method, using HPLC-ICP-MS technique, to identify and quantify the chemical species of arsenic present in two food matrices, rice and fish. Two extraction methods, ultrasound and microwave, and different settings were studied. The best method was chosen based on recovery percentages. To ensure that no interconversion of species was occurring, individual spikes of each species of arsenic were made in both matrices and recovery rates were calculated. To guaranty accurate results reference material BCR-627 TUNA FISH, containing certified values for AsB and DMA, was analyzed. Chromatographic separation was achieved using an anion exchange column, HAMILTON-PRP X-100, which allowed to separate the four arsenic species for which standards were available (AsB, dimethylarsenic (DMA), arsenite (AsIII), arsenate (AsV). The mobile phase was chosen based on scientific literature and adjusted to laboratory conditions. Different gradients were studied. As a result we verified that the arsenic species present in both matrices were not the same. While in fish 90% of the arsenic present was in the form of arsenobetaine, in rice 80% of arsenic was present as DMA and 20% as inorganic arsenic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decades, the effects of the air pollution have been increasing, especially in the case of the human health diseases. In order to overcome this problem, scientists have been studying the components of the air. As a part of water-soluble organic compounds, amino acids are present in the atmospheric environment as components of diverse living organisms which can be responsible for spreading diseases through the air. Liquid chromatography is one technique capable of distinguish the different amino acids from each other. In this work, aiming at separating the amino acids found in the aerosols samples collected in Aveiro, the ability of four columns (Mixed-Mode WAX-1, Mixed-Mode HILIC-1, Luna HILIC and Luna C18) to separate four amino acids (aspartic acid, lysine, glycine and tryptophan) and the way the interaction of the stationary phases of the columns with the analytes is influenced by organic solvent concentration and presence/concentration of the buffer, are being assessed. In the Mixed-Mode WAX-1 column, the chromatograms of the distinct amino acids revealed the separation was not efficient, since the retention times were very similar. In the case of lysine, in the elution with 80% (V/V) MeOH, the peaks appeared during the volume void. In the Mixed-Mode HILIC-1 column, the variation of the organic solvent concentration did not affect the elution of the four studied amino acids. Considering the Luna HILIC column, the retention times of the amino acids were too close to each other to ensure a separation among each other. Lastly, the Luna C18 column revealed to be useful to separate amino acids in a gradient mode, being the variation of the mobile phase composition in the organic solvent concentration (ACN). Luna C18 was the column used to separate the amino acids in the real samples and the mobile phase had acidified water and ACN. The gradient consisted in the following program: 0 – 2 min: 5% (V/V) ACN, 2 – 8 min: 5 – 2 % (V/V) ACN, 8 – 16 min: 2% (V/V) ACN, 16 – 20 min: 2 – 20 % (V/V) ACN, 20 – 35 min: 20 – 35 % (V/V) ACN. The aerosols samples were collected by using three passive samplers placed in two different locations in Aveiro and each sampler had two filters - one faced up and the other faced down. After the sampling, the water-soluble organic compounds was extracted by dissolution in ultra-pure water, sonication bath and filtration. The resulting filtered solutions were diluted in acidified water for the chromatographic separation. The results from liquid chromatography revealed the presence of the amino acids, although it was not possible to identify each one of them individually. The chromatograms and the fluorescence spectra showed the existence of some patterns: the samples that correspond to the up filters had more intense peaks and signals, revealing that the up filters collected more organic matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activated carbon was prepared from date pits via chemical activation with H3PO4. The effects of activating agent concentration and activation temperature on the yield and surface area were studied. The optimal activated carbon was prepared at 450 °C using 55 % H3PO4. The prepared activated carbon was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric-differential thermal analysis, and Brunauer, Emmett, and Teller (BET) surface area. The prepared date pit-based activated carbon (DAC) was used for the removal of bromate (BrO3 −). The concentration of BrO3 − was determined by ultra-performance liquid chromatography-mass tandem spectrometry (UPLC-MS/MS). The experimental equilibrium data for BrO3 − adsorption onto DAC was well fitted to the Langmuir isotherm model and showed maximum monolayer adsorption capacity of 25.64 mg g−1. The adsorption kinetics of BrO3 − adsorption was very well represented by the pseudo-first-order equation. The analytical application of DAC for the analysis of real water samples was studied with very promising results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To investigate the spectrum-effect relationships between high performance liquid chromatography (HPLC) fingerprints and duodenum contractility of charred areca nut (CAN) on rats. Methods: An HPLC method was used to establish the fingerprint of charred areca nut (CAN). The promoting effect on contractility of intestinal smooth was carried out to evaluate the duodenum contractility of CAN in vitro. In addition, the spectrum-effect relationships between HPLC fingerprints and bioactivities of CAN were investigated using multiple linear regression analysis (backward method). Results: Fourteen common peaks were detected and peak 3 (5-Hydroxymethyl-2-furfural, 5-HMF) was selected as the reference peak to calculate the relative retention time of 13 other common peaks. In addition, the equation of spectrum-effect relationships {Y = 3.818 - 1.126X1 + 0.817X2 - 0.045X4 - 0.504X5 + 0.728X6 - 0.056X8 + 1.122X9 - 0.247X13 - 0.978X14 (p < 0.05, R2 = 1)} was established in the present study by the multiple linear regression analysis (backward method). According to the equation, the absolute value of the coefficient before X1, X2, X4, X5, X6, X8, X9, X13, X14 was the coefficient between the component and the parameter. Conclusion: The model presented in this study successfully unraveled the spectrum-effect relationship of CAN, which provides a promising strategy for screening effective constituents of areca nut.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To study the in vivo metabolism of kurarinone, a lavandulyl flavanone which is a major constituent of Kushen and a marker compound with many biological activities, using ultra-performance liquid chromatography coupled with linear ion trap Orbitrap mass spectrometry (UPLC-LTQ-Orbitrap- MS). Methods: Six male Sprague-Dawley rats were randomly divided into two groups. First, kurarinone was suspended in 0.5 % carboxymethylcellulose sodium (CMC-Na) aqueous solution, and was given to rats (n = 3, 2 mL for each rat) orally at 50 mg/kg. A 2 mL aliquot of 0.5 % CMC-Na aqueous solution was administered to the rats in the control group. Next, urine samples were collected over 0-24 h after the oral administrations and all urine samples were pretreated by a solid phase extraction (SPE) method. Finally, all samples were analyzed by a UPLC-LTQ-Orbitrap mass spectrometry coupled with an electrospray ionization source (ESI) that was operated in the negative ionization mode. Results: A total of 11 metabolites, including the parent drug and 10 phase II metabolites in rat urine, were first detected and interpreted based on accurate mass measurement, fragment ions, and chromatographic retention times. The results were based on the assumption that kurarinone glucuronidation was the dominant metabolite that was excreted in rat urine. Conclusion: The results from this work indicate that kurarinone in vivo is typically transformed to nontoxic glucuronidation metabolites, and these findings may help to characterize the metabolic profile of kurarinone.