962 resultados para MESODERMAL TUMOR
Resumo:
Therapeutic antibodies targeting programmed cell death 1 (PD-1) activate tumor-specific immunity and have shown remarkable efficacy in the treatment of melanoma. Yet, little is known about tumor cell-intrinsic PD-1 pathway effects. Here, we show that murine and human melanomas contain PD-1-expressing cancer subpopulations and demonstrate that melanoma cell-intrinsic PD-1 promotes tumorigenesis, even in mice lacking adaptive immunity. PD-1 inhibition on melanoma cells by RNAi, blocking antibodies, or mutagenesis of melanoma-PD-1 signaling motifs suppresses tumor growth in immunocompetent, immunocompromised, and PD-1-deficient tumor graft recipient mice. Conversely, melanoma-specific PD-1 overexpression enhances tumorigenicity, as does engagement of melanoma-PD-1 by its ligand, PD-L1, whereas melanoma-PD-L1 inhibition or knockout of host-PD-L1 attenuate growth of PD-1-positive melanomas. Mechanistically, the melanoma-PD-1 receptor modulates downstream effectors of mTOR signaling. Our results identify melanoma cell-intrinsic functions of the PD-1:PD-L1 axis in tumor growth and suggest that blocking melanoma-PD-1 might contribute to the striking clinical efficacy of anti-PD-1 therapy.
Resumo:
Antibody-drug conjugates (ADCs) have emerged as a promising class of anticancer agents, combining the specificity of antibodies for tumor targeting and the destructive potential of highly potent drugs as payload. An essential component of these immunoconjugates is a bifunctional linker capable of reacting with the antibody and the payload to assemble a functional entity. Linker design is fundamental, as it must provide high stability in the circulation to prevent premature drug release, but be capable of releasing the active drug inside the target cell upon receptor-mediated endocytosis. Although ADCs have demonstrated an increased therapeutic window, compared to conventional chemotherapy in recent clinical trials, therapeutic success rates are still far from optimal. To explore other regimes of half-life variation and drug conjugation stoichiometries, it is necessary to investigate additional binding proteins which offer access to a wide range of formats, all with molecularly defined drug conjugation. Here, we delineate recent progress with site-specific and biorthogonal conjugation chemistries, and discuss alternative, biophysically more stable protein scaffolds like Designed Ankyrin Repeat Proteins (DARPins), which may provide such additional engineering opportunities for drug conjugates with improved pharmacological performance.
Resumo:
The role of genetic polymorphisms in pediatric brain tumor (PBT) etiology is poorly understood. We hypothesized that single nucleotide polymorphisms (SNPs) identified in genome-wide association studies (GWAS) on adult glioma would also be associated with PBT risk. The study is based on the Cefalo study, a population-based multicenter case-control study. Saliva DNA from 245 cases and 489 controls, aged 7-19 years at diagnosis/reference date, was extracted and genotyped for 29 SNPs reported by GWAS to be significantly associated with risk of adult glioma. Data were analyzed using unconditional logistic regression. Stratified analyses were performed for two histological subtypes: astrocytoma alone and the other tumor types combined. The results indicated that four SNPs, CDKN2BAS rs4977756 (p = 0.036), rs1412829 (p = 0.037), rs2157719 (p = 0.018) and rs1063192 (p = 0.021), were associated with an increased susceptibility to PBTs, whereas the TERT rs2736100 was associated with a decreased risk (p = 0.018). Moreover, the stratified analyses showed a decreased risk of astrocytoma associated with RTEL1 rs6089953, rs6010620 and rs2297440 (p trend = 0.022, p trend = 0.042, p trend = 0.029, respectively) as well as an increased risk of this subtype associated with RTEL1 rs4809324 (p trend = 0.033). In addition, SNPs rs10464870 and rs891835 in CCDC26 were associated with an increased risk of non-astrocytoma tumor subtypes (p trend = 0.009, p trend = 0.007, respectively). Our findings indicate that SNPs in CDKN2BAS, TERT, RTEL1 and CCDC26 may be associated with the risk of PBTs. Therefore, we suggest that pediatric and adult brain tumors might share common genetic risk factors and similar etiological pathways.
Resumo:
Neutrophils are essential to combat infectious agents but contribute to collateral inflammatory damage. Likewise, neutrophils can kill cancer cells and have been shown to promote malignant growth and metastasis through immunosuppressive functions. Two articles in a recent issue of Nature reveal new mechanisms by which tumors induce changes in neutrophil phenotype through production of inflammatory cytokines. Although the two studies report different outcomes on the effects of neutrophils on tumor growth and metastasis, they delineate novel molecular pathways influencing neutrophil phenotype that may provide new approaches to harnessing neutrophil functions in the treatment of cancer.
Resumo:
OBJECTIVE To assess whether palliative primary tumor resection in colorectal cancer patients with incurable stage IV disease is associated with improved survival. BACKGROUND There is a heated debate regarding whether or not an asymptomatic primary tumor should be removed in patients with incurable stage IV colorectal disease. METHODS Stage IV colorectal cancer patients were identified in the Surveillance, Epidemiology, and End Results database between 1998 and 2009. Patients undergoing surgery to metastatic sites were excluded. Overall survival and cancer-specific survival were compared between patients with and without palliative primary tumor resection using risk-adjusted Cox proportional hazard regression models and stratified propensity score methods. RESULTS Overall, 37,793 stage IV colorectal cancer patients were identified. Of those, 23,004 (60.9%) underwent palliative primary tumor resection. The rate of patients undergoing palliative primary cancer resection decreased from 68.4% in 1998 to 50.7% in 2009 (P < 0.001). In Cox regression analysis after propensity score matching primary cancer resection was associated with a significantly improved overall survival [hazard ratio (HR) of death = 0.40, 95% confidence interval (CI) = 0.39-0.42, P < 0.001] and cancer-specific survival (HR of death = 0.39, 95% CI = 0.38-0.40, P < 0.001). The benefit of palliative primary cancer resection persisted during the time period 1998 to 2009 with HRs equal to or less than 0.47 for both overall and cancer-specific survival. CONCLUSIONS On the basis of this population-based cohort of stage IV colorectal cancer patients, palliative primary tumor resection was associated with improved overall and cancer-specific survival. Therefore, the dogma that an asymptomatic primary tumor never should be resected in patients with unresectable colorectal cancer metastases must be questioned.
Resumo:
PURPOSE The aim of this present study was to evaluate the sonographic correlation between Doppler flow characteristics of the uterine arteries and tumor size in patients with cervical cancer, in order to establish a new potential marker to monitor treatment response. METHODS This was a retrospective cohort study of 25 patients who underwent a sonographic evaluation of Doppler flow characteristics of the uterine arteries before surgery or radiochemotherapy for early and locally advanced/advanced cervical cancer, respectively, was analyzed. The primary outcome was the correlation between Doppler flow characteristics of the uterine arteries and tumor size in patients with cervical cancer. RESULTS Median age was 49 (range 26-85) years, and mean tumor size was 40.8 ± 17 mm. A significant positive correlation was found between tumor diameter and the uterine artery end-diastolic velocity (r = 0.47, p < 0.05) as well as the peak systolic velocity (r = 0.41, p < 0.05). No correlation was found between tumor size and the pulsatility index or resistance index. CONCLUSIONS In cervical cancer, uterine artery velocity parameters are associated with tumor size. This finding could become particularly useful in the follow-up of locally advanced cervical cancer patients undergoing radiochemotherapy or in corroborating the selection of women with more possibility of a high response rate during neoadjuvant chemotherapy before surgery.
Resumo:
Despite several improvements in the surgical field and in the systemic treatment, ovarian cancer (OC) is still characterized by high recurrence rates and consequently poor survival. In OC, there is still a great lack of knowledge with regard to cancer behavior and mechanisms of recurrence, progression, and drug resistance. The OC metastatization process mostly occurs via intracoelomatic spread. Recent evidences show that tumor cells generate a favorable microenvironment consisting in T regulatory cells, T infiltrating lymphocytes, and cytokines which are able to establish an "immuno-tolerance mileau" in which a tumor cell can become a resistant clone. When the disease responds to treatment, immunoediting processes and cancer progression have been stopped. A similar inhibition of the immunosuppressive microenvironment has been observed after optimal cytoreductive surgery as well. In this scenario, the early identification of circulating tumor cells could represent a precocious signal of loss of the immune balance that precedes cancer immunoediting and relapse. Supporting this hypothesis, circulating tumor cells have been demonstrated to be a prognostic factor in several solid tumors such as colorectal, pancreatic, gastric, breast, and genitourinary cancer. In OC, the role of circulating tumor cells is still to be defined. However, as opposed to healthy women, circulating tumor cells have been demonstrated in peripheral blood of OC patients, opening a new research field in OC diagnosis, treatment monitoring, and follow-up.
Resumo:
Several improvements in ovarian cancer treatment have been achieved in recent years, both in surgery and in combination chemotherapy with targeting. However, ovarian tumors remain the women's cancers with highest mortality rates. In this scenario, a pivotal role has been endorsed to the immunological environment and to the immunological mechanisms involved in ovarian cancer behavior. Recent evidence suggests a loss of the critical balance between immune-activating and immune-suppressing mechanisms when oncogenesis and cancer progression occur. Ovarian cancer generates a mechanism to escape the immune system by producing a highly suppressive environment. Immune-activated tumor infiltrating lymphocytes (TILs) in ovarian tumor tissue testify that the immune system is the trigger in this neoplasm. The TIL mileau has been demonstrated to be associated with better prognosis, more chemosensitivity, and more cases of optimal residual tumor achieved during primary cytoreduction. Nowadays, scientists are focusing attention on new immunologically effective tumor biomarkers in order to optimize selection of patients for recruitment in clinical trials and to identify relationships of these biomarkers with responses to immunotherapeutics. Assessing this point of view, TILs might be considered as a potent predictive immunotherapy biomarker.
Resumo:
Background and Study Aim Intra- and paraventricular tumors are frequently associated with cerebrospinal fluid (CSF) pathway obstruction. Thus the aim of an endoscopic approach is to restore patency of the CSF pathways and to obtain a tumor biopsy. Because endoscopic tumor biopsy may increase tumor cell dissemination, this study sought to evaluate this risk. Patients, Materials, and Methods Forty-four patients who underwent endoscopic biopsies for ventricular or paraventricular tumors between 1993 and 2011 were included in the study. Charts and images were reviewed retrospectively to evaluate rates of adverse events, mortality, and tumor cell dissemination. Adverse events, mortality, and tumor cell dissemination were evaluated. Results Postoperative clinical condition improved in 63.0% of patients, remained stable in 30.4%, and worsened in 6.6%. One patient (2.2%) had a postoperative thalamic stroke leading to hemiparesis and hemineglect. No procedure-related deaths occurred. Postoperative tumor cell dissemination was observed in 14.3% of patients available for follow-up. Conclusions For patients presenting with occlusive hydrocephalus due to tumors in or adjacent to the ventricular system, endoscopic CSF diversion is the procedure of first choice. Tumor biopsy in the current study did not affect safety or efficacy.
Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry.
Resumo:
Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83-0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments.
Resumo:
Mouse mammary tumor virus (MMTV) contained six major proteins, identified as gp55, gp33, p25, pp20, p12, and p10. Immunoprecipitation of cytoplasmic extracts from MMTV-infected, pulse-labeled cells identified three MMTV core-specific precursor proteins, termed Pr78('gag), Pr110('gag), Pr110('gag), and Pr180('gag+). The major intracellular core-specific precursor polyprotein, Pr78('gag), contained antigenic determinants and tryptic peptides characteristic of p25, p12, and p10. Pr110('gag) contained all but one of the leucine-containing tryptic peptides of Pr78('gag), plus several additional peptides. In addition to Pr78('gag) and Pr110('gag), monospecific antisera to virion p12 and p25 also precipitated from pulse-labeled cells a small amount of Pr180('gag+). This large polyprotein contained nearly all of the leucine-containing tryptic peptides of Pr78('gag) and Pr110('gag) plus several additional peptides. By analogy to type-C viral systems, Pr180('gag+) is presumed to represent a gag-pol-specific common precursor which is the major translation product in the synthesis of MMTV RNA-dependent-DNA polymerase. Immunoprecipitation of cytoplasmic extracts from pulse-labeled cells with antisera to gp55 identified two envelope-specific proteins, designated gPr76('env) and gP79('env). The major envelope-specific precursor, gPr76('env), could be labeled with radioactive glucosamine and contained antigenic determinants and tryptic peptides characteristic of gp55 and gp33. A quantitatively minor glycoprotein, gP79('env), contained both fucose and glucosamine and was precipitable from cytoplasmic extracts with monospecific serum to gp55. It is suggested that gP79('env) represents fucosylated gPr76('env) which is transiently synthesized and cleaved rapidly into gp55 and gp33.^ A glycoprotein of 130,00 molecular weight (gP130) was precipitable from the cytoplasm of GR-strain mouse mammary tumor cells by a rabbit antiserum (anti-MMTV) to Gr-strain mouse mammary tumors virus (GR-MMTV). Two dimensional thin layer analysis of ('35)S-methionine-containing peptides revealed that five of nine gp33 peptides and one of seven gp55 peptides were shared by gP130 and gPr76('env). Six of ten p25 peptides and four more core-related peptides were shared by Pr78('gag) and gP130. Protein gP130 also contained several tryptic peptides not found in gPr76('env), or in the core protein precursors Pr78('gag), Pr110('gag), or Pr180('gag+). both gP130 and a second protein, p30, were found in immunoprecipitates of detergent disrupted, isotopically labeled GR-MMTV treated with anti-MMTV serum. Results suggest that antibodies to gP130 in the anti-MMTV serum are capable of recognizing those protein sequences which are not related to viral structural proteins. These gP130-unique peptides are evidently host specific. Polyproteins consisting of juxtaposed host- and virus-related protein tracts have been implicated in the process of cell transformation in other mammalian systems. Therefore, gP130 may be instrinsic to the oncogenic potential of MMTV. ^
Resumo:
Four 8-azaguanine (AG)-resistant and 5-bromodeoxyuridine (BUdR)-resistant clones of a mouse mammary adenocarcinoma cell line, RIII 7387, were developed and analyzed for their tumorigenic properties, in vitro characteristics, and virus expression. These characteristics were analyzed for relationships of any of the cellular parameters and the ability of these lines to produce tumors in syngeneic animals.^ The results of this study demonstrated that the parental line consists of a heterogeneous population of cells. Doubling times, saturation densities, and 2-deoxy-D-glucose uptake varied between sublines. In addition, while all sublines were found to express both B-type and C-type viral antigenic markers, levels of the major B-type and C-type viral proteins varied in the subclones. The sublines also differed markedly in their response to the presence of dexamethasone, glutathione, and insulin in the tissue culture medium.^ Variations in retrovirus expression were convirmed by electron microscopy. Budding and extracellular virus particles were seen in the majority of the cell lines. Virus particles in one of the BUdR-resistant lines, BUD9, were found however, only in inclusions and vacuoles. The AG-resistant subline AGE11 was observed to be rich in intracytoplasmic A particles. The examination of these cell lines for the presence of retroviral RNA-dependent DNA polymerase (RT) activity revealed that some B-type RT activity could be found in the culture fluid of most of the cell lines but that little C-type RT activity could be found suggesting that the C-type virus particles expressed by these RIII clones contain a defective RT.^ Tumor clones also varied in their ability to form tumors in syngeneic RIII mice. Tumor incidence ranged from 50% to 100%. The majority of the tumors regressed within 30 days post infection.^ Statistical analysis indicated that while these clones varied in their characteristics, there was no correlation between the ability of these cell lines to form tumors in syngeneic mice and any of the other characteristics examined.^ These studies have confirmed and extended the growing evidence that tumors, regardless of their natural origin, consist of heterogeneous subpopulations of cells which may vary widely in their in vitro growth behavior, their antigenic expression, and their malignant properties. ^
Resumo:
Liposomes prepared with human LS174T colon tumor cell membranes induce specific primary and secondary xenogeneic immune responses in BALB/c splenocytes in vitro. The multilamellar vesicular liposomes were prepared by adding sonicated membrane fragments in 8 mM CaCl(,2) to a dried lipid film. Cytoxic splenocytes generated in vivo exhibited specificity for the LS174T cell; liposomes elicited higher levels of cytotoxicity than did membranes (P < 0.01). Secondary blastogenic responses elicited in in vivo-primed spleen cells by liposomes also produced a significantly greater (P < 0.005) response than membranes. Subsequently, in vitro induction of primary blastogenic and cytotoxic responses by liposomes were accomplished and revealed similar kinetics to that of whole LS174T cell immunogens. Specificity of the in vitro-primed spleen cells was clearly demonstrated (P < 0.01) on a variety of human tumor cells using both the primed lymphocyte and cell-mediated cytotoxicity assays. The results of competitive inhibition tests with autologous lymphoblasts demonstrated that 30% of the cytotoxic activity was directed against lymphocyte antigens.^ The adjuvant effect of liposomes was shown to be mediated primarily by tumor antigens exposed on the outer surface of liposomes. Trypsinization of the liposomes which eliminated 96% of the surface protein reduced the ability of liposomes to induce cytotoxic splenocytes. The generation of cytolytic activity with liposomes of increasing protein concentration showed that while 10 (mu)g protein was threshold, 100 (mu)g protein induced maximal responses. In addition, membrane fluidity studies revealed that rigid liposomes were significantly (P < 0.05) more efficacious than fluid liposomes in inducing cytotoxicity.^ The induction of the primary response required the presence of nonadherent splenocytes bearing the Thy-1, Lyt-1, and Lyt-2 surface markers. The role of a Lyt-123 subpopulation was suggested by the inability of both the Lyt-1 and Lyt-2 depleted populations to completely restore the cytolytic levels to normal. In addition, the interaction of I-A('+) spleen adherent cells with liposomes for at least 8 hours was required to generate maximal cytotoxic activity. The phenotype of the cytotoxic effector was Thy-1('+), Lyt-2('+), and I-A('d-).^ Incorporation of tumor antigens into liposomes has thus enabled primary immunization in vitro to human colon cancer antigens and may afford an adaptable means to evaluate and to select specific immune responses, as well as to identify colon tumor-specific determinants.^