969 resultados para MALE FISCHER-344 RATS
Resumo:
Objective: This study reports the effects of feeding with a combination of inulin-type fructans (ITF) and fish oil (FO) on mineral absorption and bioavailability as part of a semipurified diet offered to rats. Methods: Male Wistar rats (n = 24) were fed a 15% lipid diet (soybean oil [SO] or a 1:0.3 fish:soybean oil mixture [FSO]) and diets containing the same sources of lipids supplemented with 10% ITF (Raftilose Synergy 1) ad libitum for 15 d. Feces and urine were collected for mineral analyses during the last 5 d of the test period. Fatty acid composition was determined in liver and cecal mucosa homogenates. Liver and bone mineral analyses were performed by atomic absorption spectrophotometry. Bone biomechanical analyses were evaluated by a 3-point bending test. Results: Compared with the controls, ITF-fed rats had enlarged ceca and a significant decrease in cecal content pH (P < 0.001). The apparent mineral absorption was improved in these rats, and this effect was enhanced by dietary combination with FO for all minerals except for magnesium. Addition of ITF to the diet resulted in higher bone mineral content (calcium and zinc) and bone strength, but increased bone mineral content was only statistically significant in FO-fed animals. A decrease in liver iron stores (P = 0.015) was observed in rats fed FO, considering that ITF consumption returned to levels comparable to the SO control group. Conclusion: These findings confirm the positive influence of ITF on mineral bioavailability, which was potentiated by addition of FO to the diet. (C) 2009 Published by Elsevier Inc.
Resumo:
Purpose: Exercise training restores innate immune system cell function in post-myocardial infarction (post-MI) rats. However, studies of the involvement of lymphocyte (Ly) in the setting of the congestive heart failure (CHF) are few. To address this issue, we investigated the function of Ly obtained from cervical lymph nodes from post-MI CHF rats submitted to treadmill running training. Methods: Twenty-five male Wistar rats were randomly assigned to the following groups: rats submitted to ligation of the left coronary artery, which were sedentary (MI-S, N= 7, only limited activity) or trained (MI-T, N= 6, on a treadmill (0% grade at 13-20 m.m(-1)) for 60 min.d(-1), 5 d.wk(-1), for 8-10 wk); or sham-operated rats, which were sedentary (sham-S, N = 6) or trained (sham-T, N = 6). The incorporation of [2-C-14]-thymidine by Ly cultivated in the presence of concanavalin A (Con A) and lipopolysaccharide (LPS), cytokine production by Ly cultivated in the presence of phytohemagglutinin (PHA), and plasma concentration of glutamine were assessed in all groups, 48 h after the last exercise session. Results: Proliferative capacity was increased, following incubation with Con-A in the MI groups, when compared with the sham counterparts. When incubated in the presence of PHA, MI-S produced more IL-4 (96%) than sham-S (P < 0.001). The training protocol induced a 2.2-fold increase in the production of interleukin-2 (P < 0.001) of the cells obtained from the cervical lymph nodes of MI-T, compared with MI-S. Conclusion: The moderate endurance training protocol caused an increase in IL-2 production, and a trend toward the reversion of the Th-1/Th-2 imbalance associated with IL-4 production increased in the post-MI CHF animal model.
Resumo:
Objective: The aim of this study was to histologically compare the axonal sprouting after end-to-side neurorrhaphy with or without epineurotomy. Methods: twenty male Wistar rats were used, divided into two groups of 10 rats each. A 1.0cm segment of the tibial nerve E was dried and sutured on the opposite side, where it was sutured into the sciatic nerve D. In Group I, the suture was made directly in the epineurium and in Group II, epineurotomy was performed. After 4 weeks, histological evaluation was carried out of the transposed segment and the sciatic nerve distal to the suture. Results: the results showed a small number of remyelinated fibers, varying from 7 to 51 fibers in Group I and from 10 to 91 fibers in Group II. The Mann-Whitney U test was used, with p=0.311, showing there is no statistically significant difference between the two groups. There was no positive relation between the number of remyelinated fibers in the graft and in the suture site distal to the sciatic lesion. Conclusion: lateral-ending neurorrhaphy, with or without epineural window, does not promote efficient remyelinization. Level of Evidence: Level II, prospective comparative study.
Resumo:
Introduction: Cytokines (IL-6, IL-10 and TNF-alpha) are increased after exhaustive exercise in the rat retroperitoneal (RPAT) and mesenteric adipose tissue (MEAT) pads. On the other hand, these cytokines show decreased expression in these depots in response to a chronic exercise protocol. However, the effect of exercise with overload combined with a short recovery period on pro-and anti-inflammatory cytokine expression is unknown. In the present study, we investigated the regulation of cytokine production in the adipose tissue of rats after an overtraining-inducing exercise protocol. Methods: Male Wistar rats were divided into four groups: Control (C), Trained (Tr), Overtrained (OT) and recovered overtrained (R). Cytokines (IL-6, TNF-alpha and IL-10) levels and Toll Like Receptor 4 (TLR4), Nuclear Factor kBBp65 (NF-kBp65), Hormone Sensitive Lipase (HSL) and, Perilipin protein expression were assessed in the adipose tissue. Furthermore, we analysed plasma lipid profile, insulin, testosterone, corticosterone and endotoxin levels, and liver triacylglycerol, cytokine content, as well as apolipoprotein B (apoB) and TLR4 expression in the liver. Results: OT and R groups exhibited reduced performance accompanied by lower testosterone and increased corticosterone and endotoxin levels when compared with the control and trained groups. IL-6 and IL-10 protein levels were increased in the adipose tissue of the group allowed to recover, in comparison with all the other studied groups. TLR-4 and NF-kBp65 were increased in this same group when compared with both control and trained groups. The protein expression of HSL was increased and that of Perilipin, decreased in the adipose in R in relation to the control. In addition, we found increased liver and serum TAG, along with reduced apoB protein expression and IL-6 and IL-10 levels in the of R in relation to the control and trained groups. Conclusion: In conclusion, we have shown that increases in pro-inflammatory cytokines in the adipose tissue after an overtraining protocol may be mediated via TLR-4 and NF-kBp65 signalling, leading to an inflammatory state in this tissue.
Resumo:
Background/Aim: Nitric oxide (NO) modulates the expression of the chaperone Hsp72 in the heart, and exercise stimulates both NO production and myocardial Hsp72 expression. The main purpose of the study was to investigate whether NO interferes with an exercise-induced myocardial Hsp72 expression. Methods: Male Wistar rats (70-100 days) were divided into control (C, n= 12), L-NAME-treated (L, n= 12), exercise (E, n= 13) and exercise plus L-NAME-treated (EL, n= 20) groups. L-NAME was given in drinking water (700 mg. L(-1)) and the exercise was performed on a treadmill (15-25 m.min(-1), 40-60 min. day(-1)) for seven days. Left ventricle (LV) protein Hsp content, NOS and phosphorylated-NOS (p-NOS) isoforms were measured using Western blotting. The activity of NOS was assayed in LV homogenates by the conversion of [(3)H] L-arginine to [(3)H] L-citrulline. Results: Hsp72 content was increased significantly (223%; p < 0.05) in the E group compared to the C group, but exercise alone did not alter the NOS content, p-NOS isoforms or NOS activity. Contrary to our expectation, L-NAME enhanced (p < 0.05) the exercise-induced Hsp72 content (EL vs. C, L and E groups = 1019%, 548% and 457%, respectively). Although the EL group had increased stimulatory p-eNOS(Ser1177) (over 200%) and decreased inhibitory p-nNOS(Ser852) (similar to 50%) compared to both the E and L groups (p < 0.05), NOS activity was similar in all groups. Conclusions: Our results suggest that exercise-induced cardiac Hsp72 expression does not depend on NO. Conversely, the in vivo L-NAME treatment enhances exercise-induced Hsp72 production. This effect may be due to an increase in cardiac stress. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Background and aim: given that obesity is an independent risk factor for the development of cardiovascular diseases we decided to investigate the mechanisms involved in microvascular dysfunction using a monosodium glutamate (MSG)-induced model of obesity, which allows us to work on both normotensive and normoglycemic conditions. Methods and results: Male offspring of Wistar rats received MSG from the second to the sixth day after birth. Sixteen-week-old MSG rats displayed higher Lee index, fat accumulation, dyslipidemia and insulin resistance, with no alteration in glycemia and blood pressure. The effect of norepinephrine (NE), which was increased in MSG rats, was potentiated by L-nitro arginine methyl ester (L-NAME) or tetraethylammonium (TEA) and was reversed by indomethacin and NS-398. Sensitivity to acetylcholine (ACh), which was reduced in MSG rats, was further impaired by L-NAME or TEA, and was corrected by indomethacin, NS-398 and tetrahydrobiopterin (BH4). MSG rats displayed increased endothelium-independent relaxation to sodium nitroprusside. A reduced prostacyclin/tromboxane ratio was found in the mesenteric beds of MSG rats. Mesenteric arterioles of MSG rats also displayed reduced nitric oxide (NO) production along with increased reactive oxygen species (ROS) generation; these were corrected by BH4 and either L-NAME or superoxide dismutase, respectively. The protein expression of eNOS and cyclooxygenase (COX)-2 was increased in mesenteric arterioles from MSG rats. Conclusion: Obesity/insulin resistance has a detrimental impact on vascular function. Reduced NO bioavailability and increased ROS generation from uncoupled eNOS and imbalanced release of COX products from COX-2 play a critical role in the development of these vascular alterations (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Bone loss associated with cyclosporin A (CsA) therapy can result in serious morbidity to patients. Intermittent administration of 1,25 Vitamin D and calcitonin reduces osteopenia in a murine model of postmenopausal osteoporosis. The purpose of this study was to evaluate the effects of this therapeutic approach on CsA-induced alveolar bone loss in rats. Forty male Wistar rats were allocated to four experimental groups according to the treatment received during 8 weeks: (1) CsA (10 mg/kg/day, s.c.); (2) 1,25 Vitamin D (2 mu g/kg, p.o.; in weeks 1, 3, 5, and 7) plus calcitonin (2 mu g/kg, i.p.; in weeks 2, 4, 6, and 8); (3) CsA concurrently with intermittent 1,25 Vitamin D and calcitonin administration; and (4) the control treatment group (vehicle). At the end of the 8-week treatment period, serum concentrations of bone-specific alkaline phosphatase, tartrate-resistant acid phosphatase (TRAP-5b), osteocalcin, interleukin (IL)-1 beta, IL-6, and tumor necrosis factor alpha (TNF-alpha) were measured and an analysis of bone volume, bone surface, number of osteoblasts, and osteoclasts was performed. CsA administration resulted in significant alveolar bone resorption, as assessed by a lower bone volume and an increased number of osteoclasts, and increased serum bone-specific alkaline phosphatase, TRAP-5b, IL-1 beta, IL-6, and TNF-alpha concentrations. The intermittent administration of calcitriol and calcitonin prevented the CsA-induced osteopenic changes and the increased serum concentrations of TRAP-5b and inflammatory cytokines. Intermittent calcitriol/calcitonin therapy prevents CsA-induced alveolar bone loss in rats and normalizes the production of associated inflammatory mediators.
Resumo:
Rodrigues SF, Tran ED, Fortes ZB, Schmid-Schonbein GW. Matrix metalloproteinases cleave the beta(2)-adrenergic receptor in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 299: H25-H35, 2010. First published April 9, 2010; doi:10.1152/ajpheart.00620.2009.-We recently observed the enhanced serine and matrix metalloproteinase (MMP) activity in the spontaneously hypertensive rat (SHR) compared with its normotensive Wistar-Kyoto (WKY) rat and the cleavage of membrane receptors in the SHR by MMPs. We demonstrate in vivo that MMP-7 and MMP-9 injection leads to a vasoconstrictor response in microvessels of rats that is blocked by a specific MMP inhibitor (GM-6001, 1 mu M). Multiple pathways may be responsible. Since the beta(2)-adrenergic receptor (beta(2)-AR) is susceptible to the action of endogenous MMPs, we hypothesize that MMPs in the plasma of SHRs are able to cleave the extracellular domain of the beta(2)-AR. SHR arterioles respond in an attenuated fashion to beta(2)-AR agonists and antagonists. Aorta and heart muscle of control Wistar rats were exposed for 24 h (37 C) to fresh plasma of male Wistar and WKY rats and SHRs with and without doxycycline (30 mu M) and EDTA (10 mM) to reduce MMP activity. The density of extracellular and intracellular domains of beta(2)-AR was determined by immunohistochemistry. The density of the extracellular domain of beta(2)-AR is reduced in aortic endothelial cells and cardiac microvessels of SHRs compared with that of WKY or Wistar rats. Treatment of the aorta and the heart of control Wistar rats with plasma from SHRs, but not from WKY rats, reduced the number of extracellular domains, but not intracellular domains, of beta(2)-AR in aortic endothelial cells and cardiac microvessels. MMP inhibitors (EDTA and doxycycline) prevented the cleavage of the extracellular domain. Thus MMPs may contribute to the reduced density of the extracellular domain of beta(2)-AR in blood vessels and to the increased arteriolar tone of SHRs compared with normotensive rats.
Resumo:
OBJECTIVES To test the hypothesis that glyco protein 91phox (gp91(phox)) subunit of nicotinamide adenine dinucleotide phosphate [NAD(P) H] oxidase is a fundamental target for physical activity to ameliorate erectile dysfunction (ED). Vascular risk factors are reported to contribute to ED. Regular physical exercise prevents cardiovascular diseases by increasing nitric oxide (NO) production and/or decreasing NO inactivation. METHODS Male Wistar rats received the NO synthesis inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) for 4 weeks, after which animals were submitted to a run training program for another 4 weeks. Erectile functions were evaluated by in vitro cavernosal relaxations and intracavernous pressure measurements. Expressions of gp91(phox) subunit and neuronal nitric oxidase synthase in erectile tissue, as well as superoxide dismutase activity and nitrite/nitrate (NO(x)) levels were determined. RESULTS The in vitro acetylcholine-and electrical field stimulation-induced cavernosal relaxations, as well as the increases in intracavernous pressure were markedly reduced in sedentary rats treated with L-NAME. Run training significantly restored the impaired cavernosal relaxations. No alterations in the neuronal nitric oxidase synthase protein expression (and its variant penile neuronal nitric oxidase synthase) were detected. A reduction of NO(x) levels and superoxide dismutase activity was observed in L-NAME-treated animals, which was significantly reversed by physical training. Gene expression of subunit gp91(phox) was enhanced by approximately 2-fold in erectile tissue of L-NAME-treated rats, and that was restored to basal levels by run training. CONCLUSIONS Our study shows that ED seen after long-term L-NAME treatment is associated with gp91(phox) subunit upregulation and decreased NO bioavailability. Exercise training reverses the increased oxidative stress in NO-deficient rats, ameliorating the ED. UROLOGY 75: 961-967, 2010. (C) 2009 Elsevier Inc.
Resumo:
We wanted to test if pre-exercise muscle irradiation with 904 nm laser affects the development of fatigue, blood lactate levels and creatine kinase (CK) activity in a rat model with tetanic contractions. Thirty male Wistar rats were divided into five groups receiving either one of four different laser doses (0.1, 0.3, 1.0 and 3.0 J) or a no-treatment control group. Laser irradiation was performed immediately before the first contraction for treated groups. Electrical stimulation was used to induce six tetanic tibial anterior muscle contractions with 10 min intervals between them. Contractions were stopped when the muscle force fell to 50% of the peak value for each contraction; blood samples were taken before the first and immediately after the sixth contraction. The relative peak forces for the sixth contraction were significantly better (P < 0.05) in the two laser groups irradiated with highest doses [151.27% (SD +/- A 18.82) for 1.0 J, 144.84% (SD +/- A 34.47) for 3.0 J and 82.25% (SD +/- A 11.69) for the control group]. Similar significant (P < 0.05) increases in mean performed work during the sixth contraction for the 1.0 and 3.0 J groups were also observed. Blood lactate levels were significantly lower (P < 0.05) than the control group in all irradiated groups. All irradiated groups except the 3.0 J group had significantly lower post-exercise CK activity than the control group. We conclude that pre-exercise irradiation with a laser dose of 1.0 J and 904 nm wavelength significantly delays muscle fatigue and decreases post-exercise blood lactate and CK in this rat model.
Resumo:
Nandrolone is an anabolic-androgenic steroid (AAS) that is highly abused by individuals seeking enhanced physical strength or body appearance. Supraphysiological doses of this synthetic testosterone derivative have been associated with many physical and psychiatric adverse effects, particularly episodes of impulsiveness and overt aggressive behavior. As the neural mechanisms underlying AAS-induced behavioral disinhibition are unknown, we investigated the status of serotonergic system-related transcripts in several brain areas of mice receiving prolonged nandrolone administration. Male C57BL/6J mice received 15 mg/kg of nandrolone decanoate subcutaneously once daily for 28 days, and different sets of animals were used to investigate motor-related and emotion-related behaviors or 5-HT-related messenger RNA (mRNA) levels by real-time quantitative polymerase chain reaction. AAS-injected mice had increased body weight, were more active and displayed anxious-like behaviors in novel environments. They exhibited reduced immobility in the forced swim test, a higher probability of being aggressive and more readily attacked opponents. AAS treatment substantially reduced mRNA levels of most investigated postsynaptic 5-HT receptors in the amygdala and prefrontal cortex. Interestingly, the 5-HT(1B) mRNA level was further reduced in the hippocampus and hypothalamus. There was no alteration of 5-HT system transcript levels in the midbrain. In conclusion, high doses of AAS nandrolone in male mice recapitulate the behavioral disinhibition observed in abusers. Furthermore, these high doses downregulate 5-HT receptor mRNA levels in the amygdala and prefrontal cortex. Our combined findings suggest these areas as critical sites for AAS-induced effects and a possible role for the 5-HT(1B) receptor in the observed behavioral disinhibition.
Resumo:
In addition to reducing blood pressure, hydralazine can reduce the production of inflammatory cytokines and reduce the expression of leukocyte adhesion molecules. Differences in leukocyte behavior and leukocyte adhesion molecule expression in spontaneously hypertensive rats (SHR) compared to normotensive rats have been reported. However, whether hydralazine can reduce leukocyte migration in vivo in hypertension and in normotension remains unknown. To address this question, male SHR and Wistar rats were treated for 15 days with hydralazine at a dose of similar to 3.5 mg/kg or similar to 14 mg/kg in their drinking water. The numbers of rollers and adherent and migrated cells were determined by direct vital microscopy, and blood pressure was assessed by tail plethysmography. In addition, following treatment with the higher dose, immunohistochemistry was used to measure the expression of intercellular adhesion molecule-1 (ICAM-1), P-selectin, and platelet-endothelial cell adhesion molecule-1 (PECAM-1) in endothelial cells, while flow cytometry was used to evaluate the expression of leukocyte CD18 and L-selectin. Hydralazine reduced leukocyte adherence and migration in SHR either at the higher, that reduced blood pressure levels, or lower dose, which did not reduce it. Reduced ICAM-1 expression might be involved in the reduced migration observed in SHR. In Wistar rats, only at the higher dose hydralazine reduced blood pressure levels and leukocyte migration. Reduced P-selectin expression might be involved. We therefore conclude that hydralazine reduces leukocyte migration by different mechanisms in SHR and Wistar rats, specifically by reducing ICAM-1 expression in the former and P-selectin expression in the latter. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Primary sensory afferent neurons modulate the hyperdynamic circulation in Cirrhotic rats with portal hypertension.The stomach of cirrhotic rats is prone to damage induced by ethanol, a phenomenon associated with reduced gastric hyperemic response to acid-back diffusion. The aim of this study was to examine the impact of ablation of capsaicin-sensitive neurons and the tachykinin NK(1) receptor antagonist A5330 on the susceptibility of the portal hypertensive gastric mucosa, to ethanol-induced injury and its effects on gastric cyclooxygenase (COX) and nitric oxide synthase (NOS) mRNA expression. Capsaicin was administered to neonatal, male, Wistar rats and the animals were allowed to grow. Cirrhosis was then induced by bile duct ligation in adult rats while controls had sham operation. Ethanol-induced gastric damage was assessed using ex vivo gastric chamber experiments. Gastric blood flow was measured as well as COX/NOS mRNA expression. Topical application of ethanol produced significant gastric damage in cirrhotic rats compared to controls, which was reversed in capsaicin- and A5330-treated animals. Mean arterial and portal pressure was normalized in capsaicin-treated cirrhotic rats. Capsaicin and A5330 administration restored gastric blood flow responses to topical application of ethanol followed by acid in cirrhotic rats. Differential COX and NOS mRNA expression was noted in bile duct ligated rats relative to controls. Capsaicin treatment significantly modified gastric eNOS/iNOS/COX-2 mRNA expression in cirrhotic rats. Capsaicin-sensitive neurons modulate the susceptibility of the portal hypertensive gastric mucosa to injury induced by ethanol via tachykinin NK(1) receptors and signalling of prostaglandin and NO production/release. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Background and purpose: Overactive bladder is a complex and widely prevalent condition, but little is known about its physiopathology. We have carried out morphological, biochemical and functional assays to investigate the effects of long-term nitric oxide (NO) deficiency on muscarinic receptor and beta-adrenoceptor modulation leading to overactivity of rat detrusor muscle. Experimental approach: Male Wistar rats received No-nitro-L-arginine methyl ester (L-NAME) in drinking water for 7-30 days. Functional responses to muscarinic and b-adrenoceptor agonists were measured in detrusor smooth muscle (DSM) strips in Krebs-Henseleit solution. Measurements of [H-3] inositol phosphate, NO synthase (NOS) activity, [H-3] quinuclidinyl benzilate ([H-3]QNB) binding and bladder morphology were also performed. Key results: Long-term L-NAME treatment significantly increased carbachol-induced DSM contractile responses after 15 and 30 days; relaxing responses to the beta(3)-adrenoceptor agonist BRL 37-344 were significantly reduced at 30 days. Constitutive NOS activity in bladder was reduced by 86% after 7 days and maintained up to 30 days of L-NAME treatment. Carbachol increased sixfold the [H-3] inositol phosphate in bladder tissue from rats treated with L-NAME. [H-3] QNB was bound with an apparent KD twofold higher in bladder membranes after L-NAME treatment compared with that in control. No morphological alterations in DSM were found. Conclusions and implications: Long-term NO deficiency increased rat DSM contractile responses to a muscarinic agonist, accompanied by significantly enhanced KD values for muscarinic receptors and [H-3] inositol phosphate accumulation in bladder. This supersensitivity for muscarinic agonists along with reductions of beta(3)-adrenoceptor-mediated relaxations indicated that overactive DSM resulted from chronic NO deficiency.
Resumo:
Background: Allergic lung inflammation is impaired in diabetic rats and is restored by insulin treatment. In the present study we investigated the effect of insulin on the signaling pathways triggered by allergic inflammation in the lung and the release of selected mediators. Methods: Diabetic male Wistar rats (alloxan, 42 mg/kg, i.v., 10 days) and matching controls were sensitized by s.c. injections of ovalbumin (OA) in aluminium hydroxide, 14 days before OA (1 mg/0.4 ml) or saline intratracheal challenge. A group of diabetic rats were treated with neutral protamine Hagedorn insulin (NPH, 4 IU, s.c.), 2 h before the OA challenge. Six hours after the challenge, bronchoalveolar lavage (BAL) was performed for mediator release and lung tissue was homogenized for Western blotting analysis of signaling pathways. Results: Relative to non-diabetic rats, the diabetic rats exhibited a significant reduction in OA-induced phosphorylation of the extracellular signal-regulated kinase (ERK, 59%), p38 (53%), protein kinase B (Akt, 46%), protein kinase C (PKC)-alpha (63%) and PKC-delta (38%) in lung homogenates following the antigen challenge. Activation of the NF-kappa B p65 subunit and phosphorylation of I kappa B alpha were almost suppressed in diabetic rats. Reduced expression of inducible nitric oxide synthase (iNOS, 32%) and cyclooxygenase-2 (COX-2, 46%) in the lung homogenates was also observed. The BAL concentration of prostaglandin (PG)-E(2), nitric oxide (NO) and interleukin (IL)-6 was reduced in diabetic rats (74%, 44% and 65%, respectively), whereas the cytokine-induced neutrophil chemoattractant (CINC)-2 concentration was not different from the control animals. Treatment of diabetic rats with insulin completely or partially restored all of these parameters. This protocol of insulin treatment only partially reduced the blood glucose levels. Conclusion: The data presented show that insulin regulates MAPK, PI3K, PKC and NF-kappa B pathways, the expression of the inducible enzymes iNOS and COX-2, and the levels of NO, PGE(2) and IL-6 in the early phase of allergic lung inflammation in diabetic rats. It is suggested that insulin is required for optimal transduction of the intracellular signals that follow allergic stimulation. Copyright (C) 2010 S. Karger AG, Basel