935 resultados para Lotus-japonicus
Resumo:
This data set contains aboveground community biomass in 2009 (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in 2009 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in three rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for all biomass measures are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.
Resumo:
This data set contains aboveground community biomass in 2010 (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in 2010 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in two rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for all biomass measures are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.
Resumo:
This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2002, vegetation cover was estimated only once in Septemper just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers. In 2002, cover on the community level was only estimated for the sown plant community, weed plant community and bare soil. In contrast to later years, cover of dead plant material was not estimated.
Resumo:
This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2003, vegetation cover was estimated twice in May and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers. In 2003, cover on the community level was only estimated for the sown plant community, weed plant community and bare soil. In contrast to later years, cover of dead plant material was not estimated.
Resumo:
This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2005, vegetation cover was estimated twice in May and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers. In 2005, dead plant material was found only in a few plots. Therefore, cover of dead plant material is zero for most of the 82 plots.
Resumo:
This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2006, vegetation cover was estimated twice in June and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers. In 2006, dead plant material was found only in a few plots. Therefore, cover of dead plant material is zero for most of the 82 plots.
Resumo:
This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2007, vegetation cover was estimated twice in June and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers. In 2007, dead plant material was found only in a few plots. Therefore, cover of dead plant material is zero for most of the 82 plots.
Resumo:
This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2004, vegetation cover was estimated twice in May and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers. In 2004, cover on the community level was only estimated for the sown plant community, weed plant community and bare soil. In contrast to later years, cover of dead plant material was not estimated.
Resumo:
Los principales recursos pesqueros pelágicos de interés económico en el Perú son anchoveta (Engraulis ringens), jurel (Trachurus murphyi) y caballa (Scomber japonicus) [3]. Para su evaluación, se lleva a cabo cruceros de evaluación acústica en los que se integra información de ecoabundancia y proporción de tallas por especie para obtener valores de biomasa y abundancia. Sin embargo, para especies no objetivo (como jurel), dichos valores resultan poco confiables por la lejanía entre los puntos de muestreo biométrico y acústico. Para resolver este inconveniente, el presente trabajo propuso utilizar modelos empíricos (de tipo GAM y GLM) integrando variables ambientales y de seguimiento de desembarques con la finalidad de generar índices relativos y absolutos para anchoveta y jurel en el período de 1996-2013 dentro del área de las 200 mn frente a la costa peruana. Los resultados obtenidos realzaron la importancia de los lances de comprobación para la obtención de estimaciones robustas de biomasa. Así mismo, se observó que, para anchoveta, los modelos empíricos sí produjeron un buen índice relativo y absoluto, mejorando la utilización de la ecoabundancia por sí sola. Para jurel, sin embargo, el modelo final calibrado resultó en la obtención de un mejor índice relativo. Se recomienda además, la obtención de información de tallas y pesos medios de desembarques para jurel con la finalidad de mejorar las estimaciones de biomasa y abundancia.
Resumo:
This study was carried out in the interface zone of Lake Nabugabo, which is situated to the west of Lake Victoria. Four study sites were chosen from the south-western to the eastern ends of the euhydrophyte-dominated interface zone, which was about 10 km long, 10 to 50 m wide, 2 m deep and characterized by a thick layer of peat at the bottom. Nymphaea caerulea was the most dominant and widespread euhydrophyte species except in the eastern tip of the lake where it was replaced by Nymphaea lotus. Interspersed among these lilies was Ceratophyllum demersum in certain bays which were thought to be either water inlets or out-flows; Utricularia and Nymphoides indica were associated with monospecific stand of N. caerulea in the south- western end of the zone. The microinvertebrates were dominated by Copepoda (represented mainly by Cyclopoida), and Rotifera, with Cladocera occurring sporadically, while the macroinvertebrates were represented by Mollusca, Acarina, and seven insect orders of which Diptera (represented by Chironomidae) was the most dominant and widespread. Snails were found to have increased in abundance and distribution since the early 1960's. Nymphaea-Ceratophyllum mixed habitats had far more larval fishes and macroinvertebrates than monospecific stands of N. caerulea. Generally, the eastern end of the interface zone had more macroinvertebrates and larval fishes than the south-western end. Food habits of larval fishes were dominated by chironomid larvae; others consumed included detritus, aufwuchs and, periodically, cladocerans.
Resumo:
Liquid-solid interactions become important as dimensions approach mciro/nano-scale. This dissertation focuses on liquid-solid interactions in two distinct applications: capillary driven self-assembly of thin foils into 3D structures, and droplet wetting of hydrophobic micropatterned surfaces. The phenomenon of self-assembly of complex structures is common in biological systems. Examples include self-assembly of proteins into macromolecular structures and self-assembly of lipid bilayer membranes. The principles governing this phenomenon have been applied to induce self-assembly of millimeter scale Si thin films into spherical and other 3D structures, which are then integrated into light-trapping photovoltaic (PV) devices. Motivated by this application, we present a generalized analytical study of the self-folding of thin plates into deterministic 3D shapes, through fluid-solid interactions, to be used as PV devices. This study consists of developing a model using beam theory, which incorporates the two competing components — a capillary force that promotes folding and the bending rigidity of the foil that resists folding into a 3D structure. Through an equivalence argument of thin foils of different geometry, an effective folding parameter, which uniquely characterizes the driving force for folding, has been identified. A criterion for spontaneous folding of an arbitrarily shaped 2D foil, based on the effective folding parameter, is thus established. Measurements from experiments using different materials and predictions from the model match well, validating the assumptions used in the analysis. As an alternative to the mechanics model approach, the minimization of the total free energy is employed to investigate the interactions between a fluid droplet and a flexible thin film. A 2D energy functional is proposed, comprising the surface energy of the fluid, bending energy of the thin film and gravitational energy of the fluid. Through simulations with Surface Evolver, the shapes of the droplet and the thin film at equilibrium are obtained. A critical thin film length necessary for complete enclosure of the fluid droplet, and hence successful self-assembly into a PV device, is determined and compared with the experimental results and mechanics model predictions. The results from the modeling and energy approaches and the experiments are all consistent. Superhydrophobic surfaces, which have unique properties including self-cleaning and water repelling are desired in many applications. One excellent example in nature is the lotus leaf. To fabricate these surfaces, well designed micro/nano- surface structures are often employed. In this research, we fabricate superhydrophobic micropatterned Polydimethylsiloxane (PDMS) surfaces composed of micropillars of various sizes and arrangements by means of soft lithography. Both anisotropic surfaces, consisting of parallel grooves and cylindrical pillars in rectangular lattices, and isotropic surfaces, consisting of cylindrical pillars in square and hexagonal lattices, are considered. A novel technique is proposed to image the contact line (CL) of the droplet on the hydrophobic surface. This technique provides a new approach to distinguish between partial and complete wetting. The contact area between droplet and microtextured surface is then measured for a droplet in the Cassie state, which is a state of partial wetting. The results show that although the droplet is in the Cassie state, the contact area does not necessarily follow Cassie model predictions. Moreover, the CL is not circular, and is affected by the micropatterns, in both isotropic and anisotropic cases. Thus, it is suggested that along with the contact angle — the typical parameter reported in literature quantifying wetting, the size and shape of the contact area should also be presented. This technique is employed to investigate the evolution of the CL on a hydrophobic micropatterned surface in the cases of: a single droplet impacting the micropatterned surface, two droplets coalescing on micropillars, and a receding droplet resting on the micropatterned surface. Another parameter which quantifies hydrophobicity is the contact angle hysteresis (CAH), which indicates the resistance of the surface to the sliding of a droplet with a given volume. The conventional methods of using advancing and receding angles or tilting stage to measure the resistance of the micropatterned surface are indirect, without mentioning the inaccuracy due to the discrete and stepwise motion of the CL on micropillars. A micronewton force sensor is utilized to directly measure the resisting force by dragging a droplet on a microtextured surface. Together with the proposed imaging technique, the evolution of the CL during sliding is also explored. It is found that, at the onset of sliding, the CL behaves as a linear elastic solid with a constant stiffness. Afterwards, the force first increases and then decreases and reaches a steady state, accompanied with periodic oscillations due to regular pinning and depinning of the CL. Both the maximum and steady state forces are primarily dependent on area fractions of the micropatterned surfaces in our experiment. The resisting force is found to be proportional to the number of pillars which pin the CL at the trailing edge, validating the assumption that the resistance mainly arises from the CL pinning at the trailing edge. In each pinning-and-depinning cycle during the steady state, the CL also shows linear elastic behavior but with a lower stiffness. The force variation and energy dissipation involved can also be determined. This novel method of measuring the resistance of the micropatterned surface elucidates the dependence on CL pinning and provides more insight into the mechanisms of CAH.
Resumo:
Este estudo envolve o controlo e a optimização das condições de culturas dos microrganismos: Saccharomyces cerevisiae CCMI 396, S. cerevisiae v. lab., Aspergillus oryzae CCMI 125, Aspergillus japonicus CCMI 443, Fusarium oxysporum CCMI 866, Aspergillus niger CCMI 296 com vista à produção de oligossacáridos. Determinaram-se os parâmetros característicos das culturas de duas diferentes estirpes de Saccharomyces com diferentes fontes de carbono e em diferentes condições ambientais. O perfil de crescimento da S. cerevisiae CCMI 396 foi semelhante nos diferentes meios de cultura estudados, sendo a velocidade específica de crescimento mais elevada no meio com glucose a pH 5 e a 30°C (0,36h-1). A S. cerevisiae v. lab. Teve velocidade específica de crescimento idêntica nas mesmas condições da outra estirpe, no entanto, o perfil de crescimento foi diferente nos outros meios de cultura. Estudou-se o efeito da adição de sumo de laranja ou de tomate ao meio de cultura com sacarose e avaliou-se a evolução glucídica no meio de cultura durante o ensaio por HPLC com detector RI. Determinou-se a frutosiltransferase no sobrenadante e na fracção intracelular e determinou-se a evolução dos oligossacáridos. Numa segunda parte deste trabalho efectuaram-se culturas dos quatro fungos filamentosos com vista a avaliar a capacidade de produção, nomeadamente, de frutooligassacáridos. Os resultados mostraram que a espécie Aspergillus japonicus CCMI 443 originou, nas mesmas condições de cultura, valores superiores, sendo a percentagem de produção FOStotais/GluCtotais de 61% para as enzimas intracelulares e 40% para as enzimas no sobrenadante. ABSTRACT; This study involves control and optimization of the cultures of microorganisms: Saccharomyces cerevisiae CCMI 396, S. cerevisiae v. lab., Aspergillus oryzae CCMI 125, Aspergillus japonicus CCMI 443, Fusarium oxysporum CCMI 866, Aspergillus níger CCMI 296 for oligosaccharides production. Were determined the parameters characteristic of the cultures of two different strains of Saccharomyces with different sources of carbon and in different environmental conditions. The growth profile of S. cerevisiae CCMI 396 was similar in different cultures media, but the highest specific growth was obtained in a medium with glucose, pH 5, at 30°C (0.36h-1). S. cerevisiae v. lab. had similar growth profile in a medium with glucose but with others culture media was different. We studied the effect of adding orange juice or tomato to the culture medium with sucrose and evaluated the evolution glucidic in the culture medium during the test by HPLC with RI detector. Fructosyltransferase was determined in the extracellular and the intracellular fractions and determined the evolution of oligosaccharides. ln the second part of this work were carried out cultures of four filamentous fungi in order to assess production capacity, in particular, fructoligosaccharides. The results showed that the specie Aspergillus japonicus CCMI 443 originated in the same culture conditions, higher values and the percentage of production FOStotal/Guctotal of 61% for intracellular enzymes and 40% for extracellular enzymes.
Resumo:
Fungal fruit rots and insect pests are among the most important problems negatively affecting the yield and quality of mid-Atlantic wine. In pathogenicity trials of fungi recovered from diseased Chardonnay and Vidal blanc grapes, Alternaria alternata, Pestalotiopsis telopeae, and Aspergillus japonicus were found to be unreported fruit rot pathogens in the region. Additionally, P. telopeae and A. japonicus had comparable virulence to the region’s common fruit rot pathogens. Furthermore, a timed-exclusion field study was implemented to evaluate vineyard insect-fruit rot relationships. It was found that clusters exposed to early-season insect communities that included Paralobesia viteana had a significantly greater incidence of sour rot than clusters protected from insects all season. These results were contrary to the current assumption that fall insects are the primary drivers of sour rot in the region. This research provides diagnostic tools and information to develop management-strategies against fungal and insect pests for mid-Atlantic grape growers.
Resumo:
No âmbito de uma parceria original entre uma Organização de Produtores da pesca do cerco, a Barlapesca e um Centro de Investigação dedicado às ciência do mar, o CMAR, pretendeuse com o projeto CAVALA VRP - Valorização dos Recursos Pesqueiros, inanciado pelo programa PROMAR (Eixo 4/GAC Barlavento), 1) saber se a maturação sexual das cavalas no Algarve se processava abaixo do tamanho mínimo legal de desembarque (20 cm); 2) aumentar o conhecimento quanto ao perfil nutricional desta espécie, e por último, 3) envolver todas as partes interessadas, desde pescadores aos consumidores, na promoção do seu consumo. A cavala, cujo nome científico é Scomber colias (anteriormente designada por Scomber japonicus) é das espécies mais abundantes na costa portuguesa, que era até há bem pouco tempo das mais desaproveitadas, pois, por não ter um grande valor económico, era muitas vezes rejeitada ao mar. A sua utilização para consumo humano é ainda baixa, embora seja consumida em fresco, sobretudo no Verão e em conservas e congelada ao longo de todo o ano. A cavala é também usada como isco nos covos para o polvo e em algumas pescarias com aparelhos de anzol, e mais recentemente, como alimento de atuns nas armações algarvias e andaluzas. Depois de mais de seis décadas como a segunda espécie mais desembarcada, a cavala é desde 2012, mercê do declínio da sardinha, a espécie que mais se transaciona nas lotas nacionais e algarvias. E, apesar do baixo preço de primeira venda, cerca de 0,26€/kg, a cavala representou em 2014, a sétima espécie com maior valor económico no Algarve.
Resumo:
Purpose: To examine the effectiveness of Resina Draconis capsules in the treatment of primary dysmenorrhoea. Methods: In total, 324 patients with primary dysmenorrhoea were randomly allocated to three groups based on treatment with capsules containing Resina Draconis, Leonurus japonicus Houtt., or a placebo for 3 months. The patients’ visual analogue scale (VAS) scores and dysmenorrhoea symptoms were evaluated. Results: VAS scores of the Resina Draconis, L. japonicus, and placebo groups decreased from 7.31 ± 1.36, 7.12 ± 1.65, and 7.25 ± 1.47 to 3.35 ± 1.43, 5.27 ± 1.24, and 7.08 ± 2.10, respectively. The change was greatest for the Resina Draconis group (p < 0.01). The incidence of symptoms associated with dysmenorrhoea decreased in all three groups, but the change was greatest for Resina Draconis group (p < 0.01). Overall, Resina Draconis was more effective than L. japonicus (94.40 vs. 72.20 %) (p < 0.05). Conclusion: Resina Draconis capsules are effective in relieving primary dysmenorrhoea and lowering the incidence of symptoms associated with dysmenorrhoea.