942 resultados para Local Indicators of Spatial Association
Resumo:
PURPOSE: To review the literature on young people's perspectives on health care with a view to defining domains and indicators of youth-friendly care. METHODS: Three bibliographic databases were searched to identify studies that purportedly measured young people's perspectives on health care. Each study was assessed to identify the constructs, domains, and indicators of adolescent-friendly health care. RESULTS: Twenty-two studies were identified: 15 used quantitative methods, six used qualitative methods and one used mixed methodology. Eight domains stood out as central to young people's positive experience of care. These were: accessibility of health care; staff attitude; communication; medical competency; guideline-driven care; age appropriate environments; youth involvement in health care; and health outcomes. Staff attitudes, which included notions of respect and friendliness, appeared universally applicable, whereas other domains, such as an appropriate environment including cleanliness, were more specific to particular contexts. CONCLUSION: These eight domains provide a practical framework for assessing how well services are engaging young people. Measures of youth-friendly health care should address universally applicable indicators of youth-friendly care and may benefit from additional questions that are specific to the local health setting.
Resumo:
A novel test of spatial independence of the distribution of crystals or phases in rocksbased on compositional statistics is introduced. It improves and generalizes the commonjoins-count statistics known from map analysis in geographic information systems.Assigning phases independently to objects in RD is modelled by a single-trial multinomialrandom function Z(x), where the probabilities of phases add to one and areexplicitly modelled as compositions in the K-part simplex SK. Thus, apparent inconsistenciesof the tests based on the conventional joins{count statistics and their possiblycontradictory interpretations are avoided. In practical applications we assume that theprobabilities of phases do not depend on the location but are identical everywhere inthe domain of de nition. Thus, the model involves the sum of r independent identicalmultinomial distributed 1-trial random variables which is an r-trial multinomialdistributed random variable. The probabilities of the distribution of the r counts canbe considered as a composition in the Q-part simplex SQ. They span the so calledHardy-Weinberg manifold H that is proved to be a K-1-affine subspace of SQ. This isa generalisation of the well-known Hardy-Weinberg law of genetics. If the assignmentof phases accounts for some kind of spatial dependence, then the r-trial probabilitiesdo not remain on H. This suggests the use of the Aitchison distance between observedprobabilities to H to test dependence. Moreover, when there is a spatial uctuation ofthe multinomial probabilities, the observed r-trial probabilities move on H. This shiftcan be used as to check for these uctuations. A practical procedure and an algorithmto perform the test have been developed. Some cases applied to simulated and realdata are presented.Key words: Spatial distribution of crystals in rocks, spatial distribution of phases,joins-count statistics, multinomial distribution, Hardy-Weinberg law, Hardy-Weinbergmanifold, Aitchison geometry
Resumo:
The influence of proximal olfactory cues on place learning and memory was tested in two different spatial tasks. Rats were trained to find a hole leading to their home cage or a single food source in an array of petri dishes. The two apparatuses differed both by the type of reinforcement (return to the home cage or food reward) and the local characteristics of the goal (masked holes or salient dishes). In both cases, the goal was in a fixed location relative to distant visual landmarks and could be marked by a local olfactory cue. Thus, the position of the goal was defined by two sets of redundant cues, each of which was sufficient to allow the discrimination of the goal location. These experiments were conducted with two strains of hooded rats (Long-Evans and PVG), which show different speeds of acquisition in place learning tasks. They revealed that the presence of an olfactory cue marking the goal facilitated learning of its location and that the facilitation persisted after the removal of the cue. Thus, the proximal olfactory cue appeared to potentiate learning and memory of the goal location relative to distant environmental cues. This facilitating effect was only detected when the expression of spatial memory was not already optimal, i.e., during the early phase of acquisition. It was not limited to a particular strain.
Resumo:
The loss of biodiversity has become a matter of urgent concern and a better understanding of local drivers is crucial for conservation. Although environmental heterogeneity is recognized as an important determinant of biodiversity, this has rarely been tested using field data at management scale. We propose and provide evidence for the simple hypothesis that local species diversity is related to spatial environmental heterogeneity. Species partition the environment into habitats. Biodiversity is therefore expected to be influenced by two aspects of spatial heterogeneity: 1) the variability of environmental conditions, which will affect the number of types of habitat, and 2) the spatial configuration of habitats, which will affect the rates of ecological processes, such as dispersal or competition. Earlier, simulation experiments predicted that both aspects of heterogeneity will influence plant species richness at a particular site. For the first time, these predictions were tested for plant communities using field data, which we collected in a wooded pasture in the Swiss Jura mountains using a four-level hierarchical sampling design. Richness generally increased with increasing environmental variability and "roughness" (i.e. decreasing spatial aggregation). Effects occurred at all scales, but the nature of the effect changed with scale, suggesting a change in the underlying mechanisms, which will need to be taken into account if scaling up to larger landscapes. Although we found significant effects of environmental heterogeneity, other factors such as history could also be important determinants. If a relationship between environmental heterogeneity and species richness can be shown to be general, recently available high-resolution environmental data can be used to complement the assessment of patterns of local richness and improve the prediction of the effects of land use change based on mean site conditions or land use history.
Resumo:
The assessment of spatial uncertainty in the prediction of nutrient losses by erosion associated with landscape models is an important tool for soil conservation planning. The purpose of this study was to evaluate the spatial and local uncertainty in predicting depletion rates of soil nutrients (P, K, Ca, and Mg) by soil erosion from green and burnt sugarcane harvesting scenarios, using sequential Gaussian simulation (SGS). A regular grid with equidistant intervals of 50 m (626 points) was established in the 200-ha study area, in Tabapuã, São Paulo, Brazil. The rate of soil depletion (SD) was calculated from the relation between the nutrient concentration in the sediments and the chemical properties in the original soil for all grid points. The data were subjected to descriptive statistical and geostatistical analysis. The mean SD rate for all nutrients was higher in the slash-and-burn than the green cane harvest scenario (Student’s t-test, p<0.05). In both scenarios, nutrient loss followed the order: Ca>Mg>K>P. The SD rate was highest in areas with greater slope. Lower uncertainties were associated to the areas with higher SD and steeper slopes. Spatial uncertainties were highest for areas of transition between concave and convex landforms.
Resumo:
Structural settings and lithological characteristics are traditionally assumed to influence the development of erosional landforms, such as gully networks and rock couloirs, in steep mountain rock basins. The structural control of erosion of two small alpine catchments of distinctive rock types is evaluated by comparing the correspondences between the orientations of their gullies and rock couloirs with (1) the sliding orientations of potential slope failures mechanisms, and (2) the orientation of the maximum joint frequency, this latter being considered as the direction exploited primarily by erosion and mass wasting processes. These characteristic orientations can be interpreted as structural weaknesses contributing to the initiation and propagation of erosion. The morphostructural analysis was performed using digital elevation models and field observations. The catchment comprised of magmatic intrusive rocks shows a clear structural control, mostly expressed through potential wedges failure. Such joint configurations have a particular geometry that encourages the development of gullies in hard rock, e.g. through enhanced gravitational and hydrological erosional processes. In the catchment underlain by sedimentary rocks, penetrative joints that act as structural weaknesses seem to be exploited by gullies and rock couloirs. However, the lithological setting and bedding configuration prominently control the development of erosional landforms, and influence not only the local pattern of geomorphic features, but the general morphology of the catchment. The orientations of the maximum joint frequency are clearly associated with the gully network, suggesting that its development is governed by anisotropy in rock strength. These two catchments are typical of bedrock-dominated basins prone to intense processes of debris supply. This study suggests a quantitative approach for describing the relationship between bedrock jointing and geomorphic features geometry. Incorporation of bedrock structure can be relevant when studying processes governing the transfer of clastic material, for the assessment of sediment yields and in landforms evolution models.
Resumo:
This study assesses gender differences in spatial and non-spatial relational learning and memory in adult humans behaving freely in a real-world, open-field environment. In Experiment 1, we tested the use of proximal landmarks as conditional cues allowing subjects to predict the location of rewards hidden in one of two sets of three distinct locations. Subjects were tested in two different conditions: (1) when local visual cues marked the potentially-rewarded locations, and (2) when no local visual cues marked the potentially-rewarded locations. We found that only 17 of 20 adults (8 males, 9 females) used the proximal landmarks to predict the locations of the rewards. Although females exhibited higher exploratory behavior at the beginning of testing, males and females discriminated the potentially-rewarded locations similarly when local visual cues were present. Interestingly, when the spatial and local information conflicted in predicting the reward locations, males considered both spatial and local information, whereas females ignored the spatial information. However, in the absence of local visual cues females discriminated the potentially-rewarded locations as well as males. In Experiment 2, subjects (9 males, 9 females) were tested with three asymmetrically-arranged rewarded locations, which were marked by local cues on alternate trials. Again, females discriminated the rewarded locations as well as males in the presence or absence of local cues. In sum, although particular aspects of task performance might differ between genders, we found no evidence that women have poorer allocentric spatial relational learning and memory abilities than men in a real-world, open-field environment.
Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma.
Resumo:
Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10(-8) to P = 10(-190)). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, including genes involved in biliary transport (ATP8B1 and ABCB11), glucose, carbohydrate and lipid metabolism (FADS1, FADS2, GCKR, JMJD1C, HNF1A, MLXIPL, PNPLA3, PPP1R3B, SLC2A2 and TRIB1), glycoprotein biosynthesis and cell surface glycobiology (ABO, ASGR1, FUT2, GPLD1 and ST3GAL4), inflammation and immunity (CD276, CDH6, GCKR, HNF1A, HPR, ITGA1, RORA and STAT4) and glutathione metabolism (GSTT1, GSTT2 and GGT), as well as several genes of uncertain or unknown function (including ABHD12, EFHD1, EFNA1, EPHA2, MICAL3 and ZNF827). Our results provide new insight into genetic mechanisms and pathways influencing markers of liver function.
Resumo:
It is estimated that around 230 people die each year due to radon (222Rn) exposure in Switzerland. 222Rn occurs mainly in closed environments like buildings and originates primarily from the subjacent ground. Therefore it depends strongly on geology and shows substantial regional variations. Correct identification of these regional variations would lead to substantial reduction of 222Rn exposure of the population based on appropriate construction of new and mitigation of already existing buildings. Prediction of indoor 222Rn concentrations (IRC) and identification of 222Rn prone areas is however difficult since IRC depend on a variety of different variables like building characteristics, meteorology, geology and anthropogenic factors. The present work aims at the development of predictive models and the understanding of IRC in Switzerland, taking into account a maximum of information in order to minimize the prediction uncertainty. The predictive maps will be used as a decision-support tool for 222Rn risk management. The construction of these models is based on different data-driven statistical methods, in combination with geographical information systems (GIS). In a first phase we performed univariate analysis of IRC for different variables, namely the detector type, building category, foundation, year of construction, the average outdoor temperature during measurement, altitude and lithology. All variables showed significant associations to IRC. Buildings constructed after 1900 showed significantly lower IRC compared to earlier constructions. We observed a further drop of IRC after 1970. In addition to that, we found an association of IRC with altitude. With regard to lithology, we observed the lowest IRC in sedimentary rocks (excluding carbonates) and sediments and the highest IRC in the Jura carbonates and igneous rock. The IRC data was systematically analyzed for potential bias due to spatially unbalanced sampling of measurements. In order to facilitate the modeling and the interpretation of the influence of geology on IRC, we developed an algorithm based on k-medoids clustering which permits to define coherent geological classes in terms of IRC. We performed a soil gas 222Rn concentration (SRC) measurement campaign in order to determine the predictive power of SRC with respect to IRC. We found that the use of SRC is limited for IRC prediction. The second part of the project was dedicated to predictive mapping of IRC using models which take into account the multidimensionality of the process of 222Rn entry into buildings. We used kernel regression and ensemble regression tree for this purpose. We could explain up to 33% of the variance of the log transformed IRC all over Switzerland. This is a good performance compared to former attempts of IRC modeling in Switzerland. As predictor variables we considered geographical coordinates, altitude, outdoor temperature, building type, foundation, year of construction and detector type. Ensemble regression trees like random forests allow to determine the role of each IRC predictor in a multidimensional setting. We found spatial information like geology, altitude and coordinates to have stronger influences on IRC than building related variables like foundation type, building type and year of construction. Based on kernel estimation we developed an approach to determine the local probability of IRC to exceed 300 Bq/m3. In addition to that we developed a confidence index in order to provide an estimate of uncertainty of the map. All methods allow an easy creation of tailor-made maps for different building characteristics. Our work is an essential step towards a 222Rn risk assessment which accounts at the same time for different architectural situations as well as geological and geographical conditions. For the communication of 222Rn hazard to the population we recommend to make use of the probability map based on kernel estimation. The communication of 222Rn hazard could for example be implemented via a web interface where the users specify the characteristics and coordinates of their home in order to obtain the probability to be above a given IRC with a corresponding index of confidence. Taking into account the health effects of 222Rn, our results have the potential to substantially improve the estimation of the effective dose from 222Rn delivered to the Swiss population.
Resumo:
This paper takes the shelf and digs into the complex population’s age structure of Catalan municipalities for the year 2009. Catalonia is a very heterogeneous territory, and age pyramids vary considerably across different areas of the territory, existing geographical factors shaping municipalities’ age distributions. By means of spatial statistics methodologies, this piece of research tries to assess which spatial factors determine the location, scale and shape of local distributions. The results show that there exist different distributional patterns across the geography according to specific local determinants. Keywords: Spatial Models. JEL Classification: C21.
Resumo:
The objective of this study was to evaluate the efficiency of spatial statistical analysis in the selection of genotypes in a plant breeding program and, particularly, to demonstrate the benefits of the approach when experimental observations are not spatially independent. The basic material of this study was a yield trial of soybean lines, with five check varieties (of fixed effect) and 110 test lines (of random effects), in an augmented block design. The spatial analysis used a random field linear model (RFML), with a covariance function estimated from the residuals of the analysis considering independent errors. Results showed a residual autocorrelation of significant magnitude and extension (range), which allowed a better discrimination among genotypes (increase of the power of statistical tests, reduction in the standard errors of estimates and predictors, and a greater amplitude of predictor values) when the spatial analysis was applied. Furthermore, the spatial analysis led to a different ranking of the genetic materials, in comparison with the non-spatial analysis, and a selection less influenced by local variation effects was obtained.
Resumo:
Simulated-annealing-based conditional simulations provide a flexible means of quantitatively integrating diverse types of subsurface data. Although such techniques are being increasingly used in hydrocarbon reservoir characterization studies, their potential in environmental, engineering and hydrological investigations is still largely unexploited. Here, we introduce a novel simulated annealing (SA) algorithm geared towards the integration of high-resolution geophysical and hydrological data which, compared to more conventional approaches, provides significant advancements in the way that large-scale structural information in the geophysical data is accounted for. Model perturbations in the annealing procedure are made by drawing from a probability distribution for the target parameter conditioned to the geophysical data. This is the only place where geophysical information is utilized in our algorithm, which is in marked contrast to other approaches where model perturbations are made through the swapping of values in the simulation grid and agreement with soft data is enforced through a correlation coefficient constraint. Another major feature of our algorithm is the way in which available geostatistical information is utilized. Instead of constraining realizations to match a parametric target covariance model over a wide range of spatial lags, we constrain the realizations only at smaller lags where the available geophysical data cannot provide enough information. Thus we allow the larger-scale subsurface features resolved by the geophysical data to have much more due control on the output realizations. Further, since the only component of the SA objective function required in our approach is a covariance constraint at small lags, our method has improved convergence and computational efficiency over more traditional methods. Here, we present the results of applying our algorithm to the integration of porosity log and tomographic crosshole georadar data to generate stochastic realizations of the local-scale porosity structure. Our procedure is first tested on a synthetic data set, and then applied to data collected at the Boise Hydrogeophysical Research Site.
Resumo:
OBJECTIVE: To assess the association between socioeconomic status (SES) and inflammatory markers using two different European population samples. METHODS: We used data from the CoLaus (N=6412, Lausanne, Switzerland) and EPIPorto (N=1205, Porto, Portugal) studies. Education and occupational position were used as indicators of socioeconomic status (SES). High-sensitivity C-reactive protein (hs-CRP) was available for both cohorts. Interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) were available in CoLaus; leukocyte count and fibrinogen in EPIPorto. RESULTS: We showed that low SES was significantly associated with high inflammation in both studies. We also showed that behavioural factors contributed the most to SES differences in inflammation. In both studies the larger difference between the lowest and the highest SES was observed for hs-CRP. In the Swiss sample, a linear association between education and hs-CRP persisted after adjustment for all mediating factors and confounders considered (p for linear trend <0.001). CONCLUSION: Large social differences exist in inflammatory activity, in part independently from demographic and behavioural factors, chronic conditions and medication use. SES differences in inflammation are also similar in countries with different underlying socioeconomic conditions.
Resumo:
Ordered weighted averaging (OWA) operators and their extensions are powerful tools used in numerous decision-making problems. This class of operator belongs to a more general family of aggregation operators, understood as discrete Choquet integrals. Aggregation operators are usually characterized by indicators. In this article four indicators usually associated with the OWA operator are extended to discrete Choquet integrals: namely, the degree of balance, the divergence, the variance indicator and Renyi entropies. All of these indicators are considered from a local and a global perspective. Linearity of indicators for linear combinations of capacities is investigated and, to illustrate the application of results, indicators of the probabilistic ordered weighted averaging -POWA- operator are derived. Finally, an example is provided to show the application to a specific context.
Resumo:
Health and inequalities in health among inhabitants of European cities are of major importance for European public health and there is great interest in how different health care systems in Europe perform in the reduction of health inequalities. However, evidence on the spatial distribution of cause-specific mortality across neighbourhoods of European cities is scarce. This study presents maps of avoidable mortality in European cities and analyses differences in avoidable mortality between neighbourhoods with different levels of deprivation. Methods: We determined the level of mortality from 14 avoidable causes of death for each neighbourhood of 15 large cities in different European regions. To address the problems associated with Standardised Mortality Ratios for small areas we smooth them using the Bayesian model proposed by Besag, York and Mollié. Ecological regression analysis was used to assess the association between social deprivation and mortality. Results: Mortality from avoidable causes of death is higher in deprived neighbourhoods and mortality rate ratios between areas with different levels of deprivation differ between gender and cities. In most cases rate ratios are lower among women. While Eastern and Southern European cities show higher levels of avoidable mortality, the association of mortality with social deprivation tends to be higher in Northern and lower in Southern Europe. Conclusions: There are marked differences in the level of avoidable mortality between neighbourhoods of European cities and the level of avoidable mortality is associated with social deprivation. There is no systematic difference in the magnitude of this association between European cities or regions. Spatial patterns of avoidable mortality across small city areas can point to possible local problems and specific strategies to reduce health inequality which is important for the development of urban areas and the well-being of their inhabitants