955 resultados para Load flow, Optimization of power systems
Resumo:
We show that an analysis of the mean and variance of discrete wavelet coefficients of coaveraged time-domain interferograms can be used as a specification for determining when to stop coaveraging. We also show that, if a prediction model built in the wavelet domain is used to determine the composition of unknown samples, a stopping criterion for the coaveraging process can be developed with respect to the uncertainty tolerated in the prediction.
Resumo:
An iterative procedure is described for solving nonlinear optimal control problems subject to differential algebraic equations. The procedure iterates on an integrated modified simplified model based problem with parameter updating in such a manner that the correct solution of the original nonlinear problem is achieved.
Resumo:
Use of new technologies, such as virtual reality (VR), is important to corporations, yet understanding of their successful implementation is insuf. ciently developed. In this paper a case study is used to analyse the introduction of VR use in a British housebuilding company. Although the implementation was not successful in the manner initially anticipated, the study provides insight into the process of change, the constraints that inhibit implementation and the relationship between new technology and work organization. Comparison is made with the early use of CAD and similarities and differences between empirical . ndings of the case study and the previous literature are discussed.
Resumo:
In this paper, we show how a set of recently derived theoretical results for recurrent neural networks can be applied to the production of an internal model control system for a nonlinear plant. The results include determination of the relative order of a recurrent neural network and invertibility of such a network. A closed loop controller is produced without the need to retrain the neural network plant model. Stability of the closed-loop controller is also demonstrated.
Resumo:
Recurrent neural networks can be used for both the identification and control of nonlinear systems. This paper takes a previously derived set of theoretical results about recurrent neural networks and applies them to the task of providing internal model control for a nonlinear plant. Using the theoretical results, we show how an inverse controller can be produced from a neural network model of the plant, without the need to train an additional network to perform the inverse control.
Resumo:
Two approaches are presented to calculate the weights for a Dynamic Recurrent Neural Network (DRNN) in order to identify the input-output dynamics of a class of nonlinear systems. The number of states of the identified network is constrained to be the same as the number of states of the plant.
Resumo:
In this paper the use of neural networks for the control of dynamical systems is considered. Both identification and feedback control aspects are discussed as well as the types of system for which neural networks can provide a useful technique. Multi-layer Perceptron and Radial Basis function neural network types are looked at, with an emphasis on the latter. It is shown how basis function centre selection is a critical part of the implementation process and that multivariate clustering algorithms can be an extremely useful tool for finding centres.
Resumo:
Experimental results of the temperature dependence of the nonlinear optical response of methyl red doped polymethylmethacrylate films in the range 20°C to 170°C are reported. It is found that the intensity of the phase conjugate signal resulting from degenerate four-wave mixing using pump and probe beams with parallel polarisation states increases dramatically on heating by a factor of ∼ 10, reaching a maximum at ∼ 100°C. The intensity of the phase conjugate signal for the case with crossed polarisation states of the pump and probe beams drops monotonically with increasing temperature. For both configurations the response time shortens with increasing temperature. The particular role of the polymer matrix in this temperature variation of the nonlinear optical response is discussed.
Resumo:
Conditions are given under which a descriptor, or generalized state-space system can be regularized by output feedback. It is shown that under these conditions, proportional and derivative output feedback controls can be constructed such that the closed-loop system is regular and has index at most one. This property ensures the solvability of the resulting system of dynamic-algebraic equations. A reduced form is given that allows the system properties as well as the feedback to be determined. The construction procedures used to establish the theory are based only on orthogonal matrix decompositions and can therefore be implemented in a numerically stable way.