968 resultados para Liver Metabolism
Resumo:
BACKGROUND: In uveal melanoma (UM) with metastatic disease limited to the liver, the effect of an intrahepatic treatment on survival is unknown. We investigated prospectively the efficacy and toxicity of hepatic intra-arterial (HIA) versus systemic (IV) fotemustine in patients with liver metastases from UM. PATIENTS AND METHODS: Patients were randomly assigned to receive either IV or HIA fotemustine at 100 mg/m(2) on days 1, 8, 15 (and 22 in HIA arm only) as induction, and after a 5-week rest period every 3 weeks as maintenance. Primary end point was overall survival (OS). Response rate (RR), progression-free survival (PFS) and safety were secondary end points. RESULTS: Accrual was stopped after randomization of 171 patients based on the results of a futility OS analysis. A total of 155 patients died and 16 were still alive [median follow-up 1.6 years (range 0.25-6 years)]. HIA did not improve OS (median 14.6 months) when compared with the IV arm (median 13.8 months), hazard ratio (HR) 1.09; 95% confidence interval (CI) 0.79-1.50, log-rank P = 0.59. However, there was a significant benefit on PFS for HIA compared with IV with a median of 4.5 versus 3.5 months, respectively (HR 0.62; 95% CI 0.45-0.84, log-rank P = 0.002). The 1-year PFS rate was 24% in the HIA arm versus 8% in the IV arm. An improved RR was seen in the HIA (10.5%) compared with IV treatment (2.4%). In the IV arm, the most frequent grade ≥3 toxicity was thrombocytopenia (42.1%) and neutropenia (62.6%), compared with 21.2% and 28.7% in the HIA arm. The main grade ≥3 toxicity related to HIA was catheter complications (12%) and liver toxicity (4.5%) apart from two toxic deaths. CONCLUSION: HIA treatment with fotemustine did not translate into an improved OS compared with IV treatment, despite better RR and PFS. Intrahepatic treatment should still be considered as experimental. EUDRACT NUMBER AND CLINICALTRIALSGOV IDENTIFIER: 2004-002245-12 and NCT00110123.
Resumo:
STUDY OBJECTIVES: Gamma-hydroxybutyrate (GHB) was originally introduced as an anesthetic but was first abused by bodybuilders and then became a recreational or club drug.1 Sodium salt of GHB is currently used for the treatment of cataplexy in patients with narcolepsy. The mode of action and metabolism of GHB is not well understood. GHB stimulates growth hormone release in humans and induces weight loss in treated patients, suggesting an unexplored metabolic effect. In different experiments the effect of GHB administration on central (cerebral cortex) and peripheral (liver) biochemical processes involved in the metabolism of the drug, as well as the effects of the drug on metabolism, were evaluated in mice. DESIGN: C57BL/6J, gamma-aminobutyric acid B (GABAB) knockout and obese (ob/ob) mice were acutely or chronically treated with GHB at 300 mg/kg. MEASUREMENTS AND RESULTS: Respiratory ratio decreased under GHB treatment, independent of food intake, suggesting a shift in energy substrate from carbohydrates to lipids. GHB-treated C57BL/6J and GABAB null mice but not ob/ob mice gained less weight than matched controls. GHB dramatically increased the corticosterone level but did not affect growth hormone or prolactin. Metabolome profiling showed that an acute high dose of GHB did not increase the brain GABA level. In the brain and the liver, GHB was metabolized into succinic semialdehyde by hydroxyacid-oxoacid transhydrogenase. Chronic administration decreased glutamate, s-adenosylhomocysteine, and oxidized gluthathione, and increased omega-3 fatty acids. CONCLUSIONS: Our findings indicate large central and peripheral metabolic changes induced by GHB with important relevance to its therapeutic use.
Resumo:
Glucose homoeostasis necessitates the presence in the liver of the high Km glucose transporter GLUT2. In hepatocytes, we and others have demonstrated that glucose stimulates GLUT2 gene expression in vivo and in vitro. This effect is transcriptionally regulated and requires glucose metabolism within the hepatocytes. In this report, we further characterized the cis-elements of the murine GLUT2 promoter, which confers glucose responsiveness on a reporter gene coding the chloramphenicol acetyl transferase (CAT) gene. 5'-Deletions of the murine GLUT2 promoter linked to the CAT reporter gene were transfected into a GLUT2 expressing hepatoma cell line (mhAT3F) and into primary cultured rat hepatocytes, and subsequently incubated at low and high glucose concentrations. Glucose stimulates gene transcription in a manner similar to that observed for the endogenous GLUT2 mRNA in both cell types; the -1308 to -212 bp region of the promoter contains the glucose-responsive elements. Furthermore, the -1308 to -338 bp region of the promoter contains repressor elements when tested in an heterologous thymidine kinase promoter. The glucose-induced GLUT2 mRNA accumulation was decreased by dibutyryl-cAMP both in mhAT3F cells and in primary hepatocytes. A putative cAMP-responsive element (CRE) is localized at the -1074/-1068 bp region of the promoter. The inhibitory effect of cAMP on GLUT2 gene expression was observed in hepatocytes transfected with constructs containing this CRE (-1308/+49 bp fragment), as well as with constructs not containing the consensus CRE (-312/+49 bp fragment). This suggests that the inhibitory effect of cAMP is not mediated by the putative binding site located in the repressor fragment of the GLUT2 promoter. Taken together, these data demonstrate that the elements conferring glucose and cAMP responsiveness on the GLUT2 gene are located within the -312/+49 region of the promoter.
Resumo:
PURPOSE: To evaluate the feasibility of radioimmunotherapy (RIT) with radiolabeled anti-carcinoembryonic antigen antibodies after complete resection of liver metastases (LM) from colorectal cancer. Patients and Methods: Twenty-two patients planned for surgery of one to four LM received a preoperative diagnostic dose of a 131I-F(ab')2-labeled anti-carcinoembryonic antigen monoclonal antibody F6 (8-10 mCi/5 mg). 131I-F(ab')2 uptake was analyzed using direct radioactivity counting, and tumor-to-normal liver ratios were recorded. Ten patients with tumor-to-normal liver ratios of >5 and three others were treated with a therapeutic injection [180-200 mCi 131I/50 mg F(ab')2] 30 to 64 days after surgery. RESULTS: Median 131I-F(ab')2 immunoreactivity in patient serum remained at 91% of initial values for up to 96 hours after injection. The main and dose-limiting-toxicity was hematologic, with 92% and 85% grades 3 to 4 neutropenia and thrombocytopenia, respectively. Complete spontaneous recovery occurred in all patients. No human anti-mouse antibody response was observed after the diagnosis dose; however, 10 of the 13 treated patients developed human anti-mouse antibody approximately 3 months later. Two treated patients presented extrahepatic metastases at the time of RIT (one bone and one abdominal node) and two relapsed within 3 months of RIT (one in the lung and the other in the liver). Two patients are still alive, and one of these is disease-free at 93 months after resection. At a median follow-up of 127 months, the median disease-free survival is 12 months and the median overall survival is 50 months. CONCLUSION: RIT is feasible in an adjuvant setting after complete resection of LM from colorectal cancer and should be considered for future trials, possibly in combination with chemotherapy, because of the generally poor prognosis of these patients.
Resumo:
In mammals, many aspects of metabolism are under circadian control. At least in part, this regulation is achieved by core-clock or clock-controlled transcription factors whose abundance and/or activity oscillate during the day. The clock-controlled proline- and acidic amino acid-rich domain basic leucine zipper proteins D-site-binding protein, thyrotroph embryonic factor, and hepatic leukemia factor have previously been shown to participate in the circadian control of xenobiotic detoxification in liver and other peripheral organs. Here we present genetic and biochemical evidence that the three proline- and acidic amino acid-rich basic leucine zipper proteins also play a key role in circadian lipid metabolism by influencing the rhythmic expression and activity of the nuclear receptor peroxisome proliferator-activated receptor α (PPARα). Our results suggest that, in liver, D-site-binding protein, hepatic leukemia factor, and thyrotroph embryonic factor contribute to the circadian transcription of genes specifying acyl-CoA thioesterases, leading to a cyclic release of fatty acids from thioesters. In turn, the fatty acids act as ligands for PPARα, and the activated PPARα receptor then stimulates the transcription of genes encoding proteins involved in the uptake and/or metabolism of lipids, cholesterol, and glucose metabolism.
Resumo:
The metabolism of lipids and carbohydrates related to flight activity in Panstrongylus megistus was investigated. Insects were subjected to different times of flight under laboratory conditions and changes in total lipids, lipophorin density and carbohydrates were followed in the hemolymph. Lipids and glycogen were also assayed in fat body and flight muscle. In resting insects, hemolymph lipids averaged 3.4 mg/ml and significantly increased after 45 min of flight (8.8 mg/ml, P < 0.001). High-density lipophorin was the sole lipoprotein observed in resting animals. A second fraction with lower density corresponding to low-density lipophorin appeared in insects subjected to flight. Particles from both fractions showed significant differences in diacylglycerol content and size. In resting insects, carbohydrate levels averaged 0.52 mg/ml. They sharply declined more than twofold after 15 min of flight, being undetectable in hemolymph of insects flown for 45 min. Lipid and glycogen from fat body and flight muscle decreased significantly after 45 min of flight. Taken together, the results indicate that P. megistus uses carbohydrates during the initiation of the flight after which, switching fuel for flight from carbohydrates to lipids.
Resumo:
During an excavation of a site of the corded ware culture in the Saale-Unstrut-Valley (ca. 3000 BC) in Germany, a soil sample from the pelvis of a human skeleton was studied under palaeoparasitological aspects. Eggs of the trematode Fasciola hepatica and of the nematode genus Capillaria were found. This is the first case of a direct association of a F. hepatica-infestation to both a prehistoric human skeleton and domesticated animal remains. Sheep and cattle bones were present at the same site and F. hepatica eggs were found in bovine samples. This strongly points toward an existing infection cycle, involving humans as a final host.
Resumo:
Small RNAs (sRNAs) exert important functions in pseudomonads. Classical sRNAs comprise the 4.5S, 6S, 10Sa and 10Sb RNAs, which are known in enteric bacteria as part of the signal recognition particle, a regulatory component of RNA polymerase, transfer-messenger RNA (tmRNA) and the RNA component of RNase P, respectively. Their homologues in pseudomonads are presumed to have analogous functions. Other sRNAs of pseudomonads generally have little or no sequence similarity with sRNAs of enteric bacteria. Numerous sRNAs repress or activate the translation of target mRNAs by a base-pairing mechanism. Examples of this group in Pseudomonas aeruginosa are the iron-repressible PrrF1 and PrrF2 sRNAs, which repress the translation of genes encoding iron-containing proteins, and PhrS, an anaerobically inducible sRNA, which activates the expression of PqsR, a regulator of the Pseudomonas quinolone signal. Other sRNAs sequester RNA-binding proteins that act as translational repressors. Examples of this group in P. aeruginosa include RsmY and RsmZ, which are central regulatory elements in the GacS/GacA signal transduction pathway, and CrcZ, which is a key regulator in the CbrA/CbrB signal transduction pathway. These pathways largely control the extracellular activities (including virulence traits) and the selection of the energetically most favourable carbon sources, respectively, in pseudomonads.
Resumo:
To gain insight into the function and regulation of malonyl-CoA decarboxylase (MCD) we have cloned rat MCD cDNA from a differentiated insulin-secreting pancreatic beta-cell-line cDNA library. The full-length cDNA sequence shows 69% identity with the cDNA cloned previously from the goose uropygial gland, and predicts a 492 amino acid protein of 54.7 kDa. The open reading frame contains an N-terminal mitochondrial targeting sequence and the C-terminal part of the enzyme ends with a peroxisomal (Ser-Lys-Leu) targeting motif. Since the sequence does not reveal hydrophobic domains, MCD is most likely expressed in the mitochondrial matrix and inside the peroxisomes. A second methionine residue, located 3' of the mitochondrial presequence, might be the first amino acid of a putative cytosolic MCD, since the nucleotide sequence around it fits fairly well with a consensus Kozak site for translation initiation. However, primer extension detects the presence of only one transcript initiating upstream of the first ATG, indicating that the major, if not exclusive, transcript expressed in the pancreatic beta-cell encodes MCD with its mitochondrial presequence. The sequence also shows multiple possible sites of phosphorylation by casein kinase II and protein kinase C. mRNA tissue-distribution analysis indicates a transcript of 2.2 kb, and that the MCD gene is expressed over a wide range of rat tissues. The distribution of the enzyme shows a broad range of activities from very low in the brain to elevated in the liver and heart. The results provide the foundations for further studies of the role of MCD in lipid metabolism and metabolic signalling in various tissues.
Resumo:
The purpose of this study was to investigate astrocytic oxidative metabolism using 1-(11)C-acetate. 1-(11)C-acetate kinetics were evaluated in the rat somatosensory cortex using a beta-scintillator during different manipulations (test-retest, infraorbital nerve stimulation, and administration of acetazolamide or dichloroacetate). In humans a visual activation paradigm was used and kinetics were measured with positron emission tomography. Data were analyzed using a one-tissue compartment model. The following features supported the hypothesis that washout of radiolabel (k(2)) is because of (11)C-CO(2) and therefore related to oxygen consumption (CMRO(2)): (1) the onset of (11)C washout was delayed; (2)k(2) was not affected by acetazolamide-induced blood flow increase; (3)k(2) demonstrated a significant increase during stimulation in rats (from 0.014+/-0.007 to 0.027+/-0.006 per minute) and humans (from 0.016+/-0.010 to 0.026+/-0.006 per minute); and (4) dichloroacetate led to a substantial decrease of k(2). In the test-retest experiments K(1) and k(2) were very stable. In summary, 1-(11)C-acetate seems a promising tracer to investigate astrocytic oxidative metabolism in vivo. If the washout rate indeed represents the production of (11)C-CO(2), then its increase during stimulation would point to a substantially higher astrocytic oxidative metabolism during brain activation. However, the quantitative relationship between k(2) and CMRO(2) needs to be determined in future experiments.
Resumo:
The liver tissue of a rhesus macaque inoculated with hepatitis C virus (HCV) has been analyzed for the presence of HCV RNA using the technique of in situ hybridization, both at light and electron microscopy levels. The animal was inoculated by the intrasplenic route using a HCV infected autogenic hepatocyte transplant. The serum sample used to infect the hepatocyte cells was characterized by polymerase chain reaction technique and shown to be positive for HCV RNA, genotype 3 with 10(7) RNA copies/ml. In situ hybridization was performed using a complementary negative strand probe made with the specific primer. We were able to detect and localize viral RNA in altered membranes of the rough endoplasmic reticulum of infected liver cells, showing evidence of virus replication in vivo.
Resumo:
Systhematized septal fibrosis of the liver can be induced in rats either by repeated intraperitoneal injections of pig-serum or by Capillaria hepatica infection. The relationship between these two etiological factors, as far as hepatic fibrosis is concerned, is not known, and present investigation attempts to investigate it. C. hepatica-induced septal fibrosis of the liver was considerably inhibited in rats previously rendered tolerant to pig-serum. Pig-serum-tolerant rats developed antibodies against pig-serum when infected with C. hepatica, but this did not happen when the infection occurred in normal rats. On the other hand, anti-C. hepatica antibodies failed to recognize any epitope in pig-serum, by Western blot. However, no evidence of an immunological cross reactivity was found, at least at the humoral level. Alternatively, cell-mediated mechanisms may be involved, and further investigations are warranted.
Resumo:
Copper-67 has comparable beta-particle emissions to that of 131I, but it displays more favorable gamma emission characteristics for application in radioimmunotherapy (RIT). This study investigates the potential of 67Cu-labeled monoclonal antibody (MAb) 35 for RIT of colorectal carcinoma. METHODS: Biokinetics of simultaneously injected 67Cu- and 125I-labeled MAb35 were studied in six patients scheduled for surgery of primary colorectal cancer. RESULTS: Whole-body clearance (T 1/2) of 67Cu, estimated from sequential anterior and posterior whole-body scans and corrected for decay of 67Cu, was 41 hr. Serum clearance of 67Cu was faster (27.41 hr) than that of 125I (38.33 hr). Mean tumor uptake of the 67Cu-labeled compound (0.0133% ID/g) exceeded that of 125I (0.0095% ID/g), and tumor-to-blood ratios were higher for 67Cu than for 125I, with averages of 6.07 and 2.41, respectively. The average 67Cu/125I ratio was 1.9 for tumor uptake, 0.7 for blood and 2.6 for tumor-to-blood ratios. Nonspecific liver uptake of 67Cu as calculated from whole-body scans was high in four patients, up to 25% of residual whole-body activity at 48 hr, but did not increase with time. We also observed some nonspecific bowel activity, as well as moderate to high uptake in benign polyps. CONCLUSION: Copper-67-labeled MAb35 is more favorable than its radioiodine-labeled counterpart for RIT of colorectal carcinoma due to higher tumor-to-blood ratios, but the problem of nonspecific liver and bowel uptake must first be overcome. The absolute accumulation of activity in tumor remains low, however, so the probability of cure with this compound alone is questionable. The use of 67Cu as one component of a multimodality adjuvant treatment seems to remain the most appropriate application for RIT.
Resumo:
Background: Infection with the hepatitis C virus (HCV) i s associatedwith hepatic iron accumulation. We performed a comprehensive analysisof serum ferritin levels and of their genetic determinants in thepathogenesis and treatment of patients with chronic hepatitis C enrolledin the Swiss Hepatitis C Cohort Study (SCCS).Methods: Serum ferritin levels at baseline o f therapy with p egylatedinterferon-α ( PEG-IFN-α) and ribavirin or b efore liver biopsy werecorrelated with clinical features of c hronic HCV infection, includingnecroinflammatory activity (N=970), fibrosis (N=980), steatosis (N=886)and response to treatment (N=876). The association b etween highferritin levels (> median) and the endpoints w as assessed b y logisticregression. In addition, a candidate gene analysis as well as a genomewideassociation study (GWAS) of serum ferritin levels were performed.Results: S erum ferritin > sex-specific median was one of the strongestpre-treatment predictors of failure to achieve SVR (P<0.0001, OR=0.46,95% CI=0.34-0.60). This association remained highly significant in amultivariate analysis (P=0.0001, OR=0.32, 95% CI=0.18-0.57), with anodds ratio c omparable to that of IL28B g enotype, and persisted afteradjustment for duration of infection. Additional independent predictors ofnonresponse were viral load, HCV genotype, presence of diabetes, andliver fibrosis stage. Higher serum ferritin levels were also independentlyassociated with severe liver fibrosis (P<0.0001, OR=2.67, 95% CI=1.66-4.28) a nd steatosis (P=0.0034, OR=2.34, 95% CI=1.33-4.12), but n otwith necroinflammatory a ctivity (P=0.3). No significant g eneticdeterminants of serum ferritin levels were identified.Conclusions: Elevated serum ferritin levels are associated withadvanced liver fibrosis, hepatic steatosis, and poor r esponse to IFN-α-based therapy in c hronic hepatitis C, i ndependently from IL28Bgenotype.
Resumo:
The aim of the present study was to measure the changes in resting energy expenditure (REE) induced by malaria and to assess to what extent they are related to fever and nutritional status. The REE of 19 Gambian children (mean age +/- SEM, 9 +/- 1 y; weight, 24 +/- 2 kg; expected weight for height 86 +/- 1%) were measured with a hood system at repeated intervals at the onset of malaria crisis (test A), 3 to 4 d after therapy (test B), and 14 to 21 d later (test C). Axillary temperature averaged 39.2 +/- 0.1, 36.6 +/- 0.1, and 36.7 +/- 0.1 degrees C in the tests A, B, and C, respectively. REE in test A was significantly higher than REE in test B (223 +/- 10 versus 174 +/- 8 kJ/kg.d, p less than 0.0001), but in test C (169 +/- 8 kJ/kg.d), it did not differ from that observed in test B. The percentage of increase in REE was significantly correlated with the difference in axillary temperature (r = 0.46, p less than 0.05); the slope of the regression line indicated an increase of 6.9% in REE/degree C of fever. Furthermore, the individual increase in REE/degree C was correlated to the percentage of weight for height of the children (r = 0.54, p less than 0.05), indicating that the child's nutritional status influences the magnitude of the hypermetabolism due to fever. We concluded that Gambian children suffering from an acute episode of malaria have an increase in REE averaging 30%; however, REE promptly returns to baseline value a few days after the beginning of therapy.