963 resultados para Link variables method
Resumo:
This paper is a contribution for the assessment and comparison of magnet properties based on magnetic field characteristics particularly concerning the magnetic induction uniformity in the air gaps. For this aim, a solver was developed and implemented to determine the magnetic field of a magnetic core to be used in Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometry. The electromagnetic field computation is based on a 2D finite-element method (FEM) using both the scalar and the vector potential formulation. Results for the magnetic field lines and the magnetic induction vector in the air gap are presented. The target magnetic induction is 0.2 T, which is a typical requirement of the FFC NMR technique, which can be achieved with a magnetic core based on permanent magnets or coils. In addition, this application requires high magnetic induction uniformity. To achieve this goal, a solution including superconducting pieces is analyzed. Results are compared with a different FEM program.
Resumo:
This paper analyzes the Portuguese short-run business cycles over the last 150 years and presents the multidimensional scaling (MDS) for visualizing the results. The analytical and numerical assessment of this long-run perspective reveals periods with close connections between the macroeconomic variables related to government accounts equilibrium, balance of payments equilibrium, and economic growth. The MDS method is adopted for a quantitative statistical analysis. In this way, similarity clusters of several historical periods emerge in the MDS maps, namely, in identifying similarities and dissimilarities that identify periods of prosperity and crises, growth, and stagnation. Such features are major aspects of collective national achievement, to which can be associated the impact of international problems such as the World Wars, the Great Depression, or the current global financial crisis, as well as national events in the context of broad political blueprints for the Portuguese society in the rising globalization process.
Resumo:
Component joining is typically performed by welding, fastening, or adhesive-bonding. For bonded aerospace applications, adhesives must withstand high-temperatures (200°C or above, depending on the application), which implies their mechanical characterization under identical conditions. The extended finite element method (XFEM) is an enhancement of the finite element method (FEM) that can be used for the strength prediction of bonded structures. This work proposes and validates damage laws for a thin layer of an epoxy adhesive at room temperature (RT), 100, 150, and 200°C using the XFEM. The fracture toughness (G Ic ) and maximum load ( ); in pure tensile loading were defined by testing double-cantilever beam (DCB) and bulk tensile specimens, respectively, which permitted building the damage laws for each temperature. The bulk test results revealed that decreased gradually with the temperature. On the other hand, the value of G Ic of the adhesive, extracted from the DCB data, was shown to be relatively insensitive to temperature up to the glass transition temperature (T g ), while above T g (at 200°C) a great reduction took place. The output of the DCB numerical simulations for the various temperatures showed a good agreement with the experimental results, which validated the obtained data for strength prediction of bonded joints in tension. By the obtained results, the XFEM proved to be an alternative for the accurate strength prediction of bonded structures.
Resumo:
The problem of uncertainty propagation in composite laminate structures is studied. An approach based on the optimal design of composite structures to achieve a target reliability level is proposed. Using the Uniform Design Method (UDM), a set of design points is generated over a design domain centred at mean values of random variables, aimed at studying the space variability. The most critical Tsai number, the structural reliability index and the sensitivities are obtained for each UDM design point, using the maximum load obtained from optimal design search. Using the UDM design points as input/output patterns, an Artificial Neural Network (ANN) is developed based on supervised evolutionary learning. Finally, using the developed ANN a Monte Carlo simulation procedure is implemented and the variability of the structural response based on global sensitivity analysis (GSA) is studied. The GSA is based on the first order Sobol indices and relative sensitivities. An appropriate GSA algorithm aiming to obtain Sobol indices is proposed. The most important sources of uncertainty are identified.
Resumo:
Mestrado em Intervenção Sócio-Organizacional na Saúde - Ramo de especialização: Políticas de Administração e Gestão de Serviços de Saúde
Resumo:
O tema do sistema de automação da protecção diferencial de linha e comparação direccional é merecedor de uma nova abordagem devido às recentes inovações tecnológicas ocorridas desde o aparecimento dos relés digitais e à consequente comunicação entre os sistemas de protecção, em particular na comunicação entre protecções diferenciais de linha. A protecção diferencial de linha apresenta claras vantagens face às protecções actualmente utilizadas para a protecção de linhas de transmissão e distribuição, tais como, Protecção de Máximo Intensidade de Fase, Máximo Intensidade Homopolar Direccionale Protecção de Distância. Contudo, existem alguns problemas associados a este tipo de protecções, nomeadamente na comunicação entre relés. Para automação e comunicação de protecções diferenciais de linhas de transmissão, no caso da ocorrência de defeitos na zona protegida pelo sistema de protecção diferencial foi empregue um método inovador para este tipo de sistema. Uma vez que a eficácia da actuação das protecções diferenciais depende do rigor das variáveis que são necessárias enviar entre protecções que se encontram localizadas em subestações distintas, recorreu-se à utilização de um automatismo para comunicação entre relés suportado pelo desenvolvimento de novos algoritmos para detectar quase instantaneamente um defeito em qualquer zona de protecção de uma linha de transmissão. Estes algoritmos são baseados na Transformada de Park, pelo que, é introduzido um novo conceito neste tipo de protecções. Através destes algoritmos é possível atenuar os problemas associados à protecção diferencial de linha. No sentido de verificar a aplicabilidade destes algoritmos à protecção diferencial de linha são apresentados diversos casos de estudo. Através dos resultados obtidos também foi possível verificar as vantagens associadas à utilização dos algoritmos propostos.
Resumo:
To avoid additional hardware deployment, indoor localization systems have to be designed in such a way that they rely on existing infrastructure only. Besides the processing of measurements between nodes, localization procedure can include the information of all available environment information. In order to enhance the performance of Wi-Fi based localization systems, the innovative solution presented in this paper considers also the negative information. An indoor tracking method inspired by Kalman filtering is also proposed.
Resumo:
The basic motivation of this work was the integration of biophysical models within the interval constraints framework for decision support. Comparing the major features of biophysical models with the expressive power of the existing interval constraints framework, it was clear that the most important inadequacy was related with the representation of differential equations. System dynamics is often modelled through differential equations but there was no way of expressing a differential equation as a constraint and integrate it within the constraints framework. Consequently, the goal of this work is focussed on the integration of ordinary differential equations within the interval constraints framework, which for this purpose is extended with the new formalism of Constraint Satisfaction Differential Problems. Such framework allows the specification of ordinary differential equations, together with related information, by means of constraints, and provides efficient propagation techniques for pruning the domains of their variables. This enabled the integration of all such information in a single constraint whose variables may subsequently be used in other constraints of the model. The specific method used for pruning its variable domains can then be combined with the pruning methods associated with the other constraints in an overall propagation algorithm for reducing the bounds of all model variables. The application of the constraint propagation algorithm for pruning the variable domains, that is, the enforcement of local-consistency, turned out to be insufficient to support decision in practical problems that include differential equations. The domain pruning achieved is not, in general, sufficient to allow safe decisions and the main reason derives from the non-linearity of the differential equations. Consequently, a complementary goal of this work proposes a new strong consistency criterion, Global Hull-consistency, particularly suited to decision support with differential models, by presenting an adequate trade-of between domain pruning and computational effort. Several alternative algorithms are proposed for enforcing Global Hull-consistency and, due to their complexity, an effort was made to provide implementations able to supply any-time pruning results. Since the consistency criterion is dependent on the existence of canonical solutions, it is proposed a local search approach that can be integrated with constraint propagation in continuous domains and, in particular, with the enforcing algorithms for anticipating the finding of canonical solutions. The last goal of this work is the validation of the approach as an important contribution for the integration of biophysical models within decision support. Consequently, a prototype application that integrated all the proposed extensions to the interval constraints framework is developed and used for solving problems in different biophysical domains.
Resumo:
OBJECTIVE: To analyze the strengths and limitations of the Family Health Strategy from the perspective of health care professionals and the community. METHODS: Between June-August 2009, in the city of Vespasiano, Minas Gerais State, Southeastern Brazil, a questionnaire was used to evaluate the Family Health Strategy (ESF) with 77 healthcare professionals and 293 caregivers of children under five. Health care professional training, community access to health care, communication with patients and delivery of health education and pediatric care were the main points of interest in the evaluation. Logistic regression analysis was used to obtain odds ratios and 95% confidence intervals as well as to assess the statistical significance of the variables studied. RESULTS: The majority of health care professionals reported their program training was insufficient in quantity, content and method of delivery. Caregivers and professionals identified similar weaknesses (services not accessible to the community, lack of healthcare professionals, poor training for professionals) and strengths (community health worker-patient communications, provision of educational information, and pediatric care). Recommendations for improvement included: more doctors and specialists, more and better training, and scheduling improvements. Caregiver satisfaction with the ESF was found to be related to perceived benefits such as community health agent household visits (OR 5.8, 95%CI 2.8;12.1), good professional-patient relationships (OR 4.8, 95%CI 2.5;9.3), and family-focused health (OR 4.1, 95%CI 1.6;10.2); and perceived problems such as lack of personnel (OR 0.3, 95%CI 0.2;0.6), difficulty with access (OR 0.2, 95%CI 0.1;0.4), and poor quality of care (OR 0.3, 95%CI 0.1;0.6). Overall, 62% of caregivers reported being generally satisfied with the ESF services. CONCLUSIONS: Identifying the limitations and strengths of the Family Health Strategy from the healthcare professional and caregiver perspective may serve to advance primary community healthcare in Brazil.
RadiaLE: A framework for designing and assessing link quality estimators in wireless sensor networks
Resumo:
Stringent cost and energy constraints impose the use of low-cost and low-power radio transceivers in large-scale wireless sensor networks (WSNs). This fact, together with the harsh characteristics of the physical environment, requires a rigorous WSN design. Mechanisms for WSN deployment and topology control, MAC and routing, resource and mobility management, greatly depend on reliable link quality estimators (LQEs). This paper describes the RadiaLE framework, which enables the experimental assessment, design and optimization of LQEs. RadiaLE comprises (i) the hardware components of the WSN testbed and (ii) a software tool for setting-up and controlling the experiments, automating link measurements gathering through packets-statistics collection, and analyzing the collected data, allowing for LQEs evaluation. We also propose a methodology that allows (i) to properly set different types of links and different types of traffic, (ii) to collect rich link measurements, and (iii) to validate LQEs using a holistic and unified approach. To demonstrate the validity and usefulness of RadiaLE, we present two case studies: the characterization of low-power links and a comparison between six representative LQEs. We also extend the second study for evaluating the accuracy of the TOSSIM 2 channel model.
Resumo:
Radio link quality estimation in Wireless Sensor Networks (WSNs) has a fundamental impact on the network performance and also affects the design of higher-layer protocols. Therefore, for about a decade, it has been attracting a vast array of research works. Reported works on link quality estimation are typically based on different assumptions, consider different scenarios, and provide radically different (and sometimes contradictory) results. This article provides a comprehensive survey on related literature, covering the characteristics of low-power links, the fundamental concepts of link quality estimation in WSNs, a taxonomy of existing link quality estimators, and their performance analysis. To the best of our knowledge, this is the first survey tackling in detail link quality estimation in WSNs. We believe our efforts will serve as a reference to orient researchers and system designers in this area.
Resumo:
Global warming and the associated climate changes are being the subject of intensive research due to their major impact on social, economic and health aspects of the human life. Surface temperature time-series characterise Earth as a slow dynamics spatiotemporal system, evidencing long memory behaviour, typical of fractional order systems. Such phenomena are difficult to model and analyse, demanding for alternative approaches. This paper studies the complex correlations between global temperature time-series using the Multidimensional scaling (MDS) approach. MDS provides a graphical representation of the pattern of climatic similarities between regions around the globe. The similarities are quantified through two mathematical indices that correlate the monthly average temperatures observed in meteorological stations, over a given period of time. Furthermore, time dynamics is analysed by performing the MDS analysis over slices sampling the time series. MDS generates maps describing the stations’ locus in the perspective that, if they are perceived to be similar to each other, then they are placed on the map forming clusters. We show that MDS provides an intuitive and useful visual representation of the complex relationships that are present among temperature time-series, which are not perceived on traditional geographic maps. Moreover, MDS avoids sensitivity to the irregular distribution density of the meteorological stations.
Resumo:
This paper presents a novel method for the analysis of nonlinear financial and economic systems. The modeling approach integrates the classical concepts of state space representation and time series regression. The analytical and numerical scheme leads to a parameter space representation that constitutes a valid alternative to represent the dynamical behavior. The results reveal that business cycles can be clearly revealed, while the noise effects common in financial indices can elegantly be filtered out of the results.
Resumo:
A new general fitting method based on the Self-Similar (SS) organization of random sequences is presented. The proposed analytical function helps to fit the response of many complex systems when their recorded data form a self-similar curve. The verified SS principle opens new possibilities for the fitting of economical, meteorological and other complex data when the mathematical model is absent but the reduced description in terms of some universal set of the fitting parameters is necessary. This fitting function is verified on economical (price of a commodity versus time) and weather (the Earth’s mean temperature surface data versus time) and for these nontrivial cases it becomes possible to receive a very good fit of initial data set. The general conditions of application of this fitting method describing the response of many complex systems and the forecast possibilities are discussed.
Resumo:
This paper reports on the analysis of tidal breathing patterns measured during noninvasive forced oscillation lung function tests in six individual groups. The three adult groups were healthy, with prediagnosed chronic obstructive pulmonary disease, and with prediagnosed kyphoscoliosis, respectively. The three children groups were healthy, with prediagnosed asthma, and with prediagnosed cystic fibrosis, respectively. The analysis is applied to the pressure–volume curves and the pseudophaseplane loop by means of the box-counting method, which gives a measure of the area within each loop. The objective was to verify if there exists a link between the area of the loops, power-law patterns, and alterations in the respiratory structure with disease. We obtained statistically significant variations between the data sets corresponding to the six groups of patients, showing also the existence of power-law patterns. Our findings support the idea that the respiratory system changes with disease in terms of airway geometry and tissue parameters, leading, in turn, to variations in the fractal dimension of the respiratory tree and its dynamics.