984 resultados para Linear Optimization
Resumo:
Geographic information systems (GIS) and artificial intelligence (AI) techniques were used to develop an intelligent snow removal asset management system (SRAMS). The system has been evaluated through a case study examining snow removal from the roads in Black Hawk County, Iowa, for which the Iowa Department of Transportation (Iowa DOT) is responsible. The SRAMS is comprised of an expert system that contains the logical rules and expertise of the Iowa DOT’s snow removal experts in Black Hawk County, and a geographic information system to access and manage road data. The system is implemented on a mid-range PC by integrating MapObjects 2.1 (a GIS package), Visual Rule Studio 2.2 (an AI shell), and Visual Basic 6.0 (a programming tool). The system could efficiently be used to generate prioritized snowplowing routes in visual format, to optimize the allocation of assets for plowing, and to track materials (e.g., salt and sand). A test of the system reveals an improvement in snowplowing time by 1.9 percent for moderate snowfall and 9.7 percent for snowstorm conditions over the current manual system.
Resumo:
[cat] En aquest treball extenem les reformes lineals introduïdes per Pfähler (1984) al cas d’impostos duals. Estudiem l’efecte relatiu que els retalls lineals duals d’un impost dual tenen sobre la distribució de la desigualtat -es pot fer un estudi simètric per al cas d’augments d’impostos-. Tambe introduïm mesures del grau de progressivitat d’impostos duals i mostrem que estan connectades amb el criteri de dominació de Lorenz. Addicionalment, estudiem l’elasticitat de la càrrega fiscal de cadascuna de les reformes proposades. Finalment, gràcies a un model de microsimulació i una gran base de dades que conté informació sobre l’IRPF espanyol de l’any 2004, 1) comparem l’efecte que diferents reformes tindrien sobre l’impost dual espanyol i 2) estudiem quina redistribució de la riquesa va suposar la reforma dual de l’IRPF (Llei ’35/2006’) respecte l’anterior impost.
Resumo:
Linear IgA bullous dermatosis (LABD) is an autoimmune disease, characterized by linear deposition of IgA along the basement membrane zone. Drug-induced LABD is rare but increasing in frequency. A new case of drug-induced LABD associated with the administration of furosemide is described.
Resumo:
La aplicabilidad, repetibilidad y capacidad de diferentes métodos de análisis para discriminar muestras de aceites con diferentes grados de oxidación fueron evaluadas mediante aceites recogidos en procesos de fritura en continuo en varias empresas españolas. El objetivo de este trabajo fue encontrar métodos complementarios a la determinación del índice de acidez para el control de calidad rutinario de los aceites de fritura empleados en estas empresas. La optimización de la determinación de la constante dieléctrica conllevó una clara mejora de la variabilidad. No obstante, excepto en el caso del índice del ATB, el resto de métodos ensayados mostraron una menor variabilidad. La determinación del índice del ATB fue descartada ya que su sensibilidad fue insuficiente para discriminar entre aceites con diferente grado de oxidación. Los diferentes parámetros de alteración determinados en los aceites de fritura mostraron correlaciones significativas entre el índice de acidez y varios parámetros de oxidación diferentes, como la constante dieléctrica, el índice de p-anisidina, la absorción al ultravioleta y el contenido en polímeros de los triacilgliceroles. El índice de acidez solo evalúa la alteración hidrolítica, por lo que estos parámetros aportan información complementaria al evaluar la alteración termooxidativa.
Resumo:
The propagation of a pulse in a nonlinear array of oscillators is influenced by the nature of the array and by its coupling to a thermal environment. For example, in some arrays a pulse can be speeded up while in others a pulse can be slowed down by raising the temperature. We begin by showing that an energy pulse (one dimension) or energy front (two dimensions) travels more rapidly and remains more localized over greater distances in an isolated array (microcanonical) of hard springs than in a harmonic array or in a soft-springed array. Increasing the pulse amplitude causes it to speed up in a hard chain, leaves the pulse speed unchanged in a harmonic system, and slows down the pulse in a soft chain. Connection of each site to a thermal environment (canonical) affects these results very differently in each type of array. In a hard chain the dissipative forces slow down the pulse while raising the temperature speeds it up. In a soft chain the opposite occurs: the dissipative forces actually speed up the pulse, while raising the temperature slows it down. In a harmonic chain neither dissipation nor temperature changes affect the pulse speed. These and other results are explained on the basis of the frequency vs energy relations in the various arrays
Resumo:
The purpose of this article was to review the strategies to control patient dose in adult and pediatric computed tomography (CT), taking into account the change of technology from single-detector row CT to multi-detector row CT. First the relationships between computed tomography dose index, dose length product, and effective dose in adult and pediatric CT are revised, along with the diagnostic reference level concept. Then the effect of image noise as a function of volume computed tomography dose index, reconstructed slice thickness, and the size of the patient are described. Finally, the potential of tube current modulation CT is discussed.
Resumo:
Brain fluctuations at rest are not random but are structured in spatial patterns of correlated activity across different brain areas. The question of how resting-state functional connectivity (FC) emerges from the brain's anatomical connections has motivated several experimental and computational studies to understand structure-function relationships. However, the mechanistic origin of resting state is obscured by large-scale models' complexity, and a close structure-function relation is still an open problem. Thus, a realistic but simple enough description of relevant brain dynamics is needed. Here, we derived a dynamic mean field model that consistently summarizes the realistic dynamics of a detailed spiking and conductance-based synaptic large-scale network, in which connectivity is constrained by diffusion imaging data from human subjects. The dynamic mean field approximates the ensemble dynamics, whose temporal evolution is dominated by the longest time scale of the system. With this reduction, we demonstrated that FC emerges as structured linear fluctuations around a stable low firing activity state close to destabilization. Moreover, the model can be further and crucially simplified into a set of motion equations for statistical moments, providing a direct analytical link between anatomical structure, neural network dynamics, and FC. Our study suggests that FC arises from noise propagation and dynamical slowing down of fluctuations in an anatomically constrained dynamical system. Altogether, the reduction from spiking models to statistical moments presented here provides a new framework to explicitly understand the building up of FC through neuronal dynamics underpinned by anatomical connections and to drive hypotheses in task-evoked studies and for clinical applications.
Resumo:
Ski resorts are deploying more and more systems of artificial snow. These tools are necessary to ensure an important economic activity for the high alpine valleys. However, artificial snow raises important environmental issues that can be reduced by an optimization of its production. This paper presents a software prototype based on artificial intelligence to help ski resorts better manage their snowpack. It combines on one hand a General Neural Network for the analysis of the snow cover and the spatial prediction, with on the other hand a multiagent simulation of skiers for the analysis of the spatial impact of ski practice. The prototype has been tested on the ski resort of Verbier (Switzerland).
Resumo:
This paper presents multiple kernel learning (MKL) regression as an exploratory spatial data analysis and modelling tool. The MKL approach is introduced as an extension of support vector regression, where MKL uses dedicated kernels to divide a given task into sub-problems and to treat them separately in an effective way. It provides better interpretability to non-linear robust kernel regression at the cost of a more complex numerical optimization. In particular, we investigate the use of MKL as a tool that allows us to avoid using ad-hoc topographic indices as covariables in statistical models in complex terrains. Instead, MKL learns these relationships from the data in a non-parametric fashion. A study on data simulated from real terrain features confirms the ability of MKL to enhance the interpretability of data-driven models and to aid feature selection without degrading predictive performances. Here we examine the stability of the MKL algorithm with respect to the number of training data samples and to the presence of noise. The results of a real case study are also presented, where MKL is able to exploit a large set of terrain features computed at multiple spatial scales, when predicting mean wind speed in an Alpine region.
Resumo:
One major methodological problem in analysis of sequence data is the determination of costs from which distances between sequences are derived. Although this problem is currently not optimally dealt with in the social sciences, it has some similarity with problems that have been solved in bioinformatics for three decades. In this article, the authors propose an optimization of substitution and deletion/insertion costs based on computational methods. The authors provide an empirical way of determining costs for cases, frequent in the social sciences, in which theory does not clearly promote one cost scheme over another. Using three distinct data sets, the authors tested the distances and cluster solutions produced by the new cost scheme in comparison with solutions based on cost schemes associated with other research strategies. The proposed method performs well compared with other cost-setting strategies, while it alleviates the justification problem of cost schemes.
Resumo:
Substantial investment in climate change research has led to dire predictions of the impacts and risks to biodiversity. The Intergovernmental Panel on Climate Change fourth assessment report(1) cites 28,586 studies demonstrating significant biological changes in terrestrial systems(2). Already high extinction rates, driven primarily by habitat loss, are predicted to increase under climate change(3-6). Yet there is little specific advice or precedent in the literature to guide climate adaptation investment for conserving biodiversity within realistic economic constraints(7). Here we present a systematic ecological and economic analysis of a climate adaptation problem in one of the world's most species-rich and threatened ecosystems: the South African fynbos. We discover a counterintuitive optimal investment strategy that switches twice between options as the available adaptation budget increases. We demonstrate that optimal investment is nonlinearly dependent on available resources, making the choice of how much to invest as important as determining where to invest and what actions to take. Our study emphasizes the importance of a sound analytical framework for prioritizing adaptation investments(4). Integrating ecological predictions in an economic decision framework will help support complex choices between adaptation options under severe uncertainty. Our prioritization method can be applied at any scale to minimize species loss and to evaluate the robustness of decisions to uncertainty about key assumptions.
Resumo:
We showed earlier how to predict the writhe of any rational knot or link in its ideal geometric configuration, or equivalently the average of the 3D writhe over statistical ensembles of random configurations of a given knot or link (Cerf and Stasiak 2000 Proc. Natl Acad. Sci. USA 97 3795). There is no general relation between the minimal crossing number of a knot and the writhe of its ideal geometric configuration. However, within individual families of knots linear relations between minimal crossing number and writhe were observed (Katritch et al 1996 Nature 384 142). Here we present a method that allows us to express the writhe as a linear function of the minimal crossing number within Conway families of knots and links in their ideal configuration. The slope of the lines and the shift between any two lines with the same