954 resultados para Ledoux, Claude Nicolas
Resumo:
The 21st century will see monumental change. Either the human race will use its knowledge and skills and change the way it interacts with the environment, or the environment will change the way it interacts with its inhabitants. In the first case, the focus of this book, we would see our sophisticated understanding in areas such as physics, chemistry, engineering, biology, planning, commerce, business and governance accumulated over the last 1,000 years brought to bear on the challenge of dramatically reducing our pressure on the environment. The second case however is the opposite scenario, involving the decline of the planet’s ecosystems until they reach thresholds where recovery is not possible, and following which we have no idea what happens. For instance, if we fail to respond to Sir Nicolas Stern’s call to meet appropriate stabilisation trajectories for greenhouse gas emissions, and we allow the average temperature of our planets surface to increase by 4-6 degrees Celsius, we will see staggering changes to our environment, including rapidly rising sea level, withering crops, diminishing water reserves, drought, cyclones, floods… allowing this to happen will be the failure of our species, and those that survive will have a deadly legacy. In this update to the 1997 International Best Seller, Factor Four, Ernst von Weizsäcker again leads a team to present a compelling case for sector wide advances that can deliver significant resource productivity improvements over the coming century. The purpose of this book is to inspire hope and to then inform meaningful action in the coming decades to respond to the greatest challenge our species has ever faced – that of living in harmony with our planet and its other inhabitants.
Resumo:
Current military conflicts are characterized by the use of the improvised explosive device. Improvements in personal protection, medical care, and evacuation logistics have resulted in increasing numbers of casualties surviving with complex musculoskeletal injuries, often leading to lifelong disability. Thus, there exists an urgent requirement to investigate the mechanism of extremity injury caused by these devices in order to develop mitigation strategies. In addition, the wounds of war are no longer restricted to the battlefield; similar injuries can be witnessed in civilian centers following a terrorist attack. Key to understanding such mechanisms of injury is the ability to deconstruct the complexities of an explosive event into a controlled, laboratory-based environment. In this article, a traumatic injury simulator, designed to recreate in the laboratory the impulse that is transferred to the lower extremity from an anti-vehicle explosion, is presented and characterized experimentally and numerically. Tests with instrumented cadaveric limbs were then conducted to assess the simulator’s ability to interact with the human in two mounting conditions, simulating typical seated and standing vehicle passengers. This experimental device will now allow us to (a) gain comprehensive understanding of the load-transfer mechanisms through the lower limb, (b) characterize the dissipating capacity of mitigation technologies, and (c) assess the bio-fidelity of surrogates.
Resumo:
Background Improvised explosive devices have become the characteristic weapon of conflicts in Iraq and Afghanistan. While little can be done to mitigate against the effects of blast in free-field explosions, scaled blast simulations have shown that the combat boot can attenuate the effects on the vehicle occupants of anti-vehicular mine blasts. Although the combat boot offers some protection to the lower limb, its behaviour at the energies seen in anti-vehicular mine blast has not been documented previously. Methods The sole of eight same-size combat boots from two brands currently used by UK troops deployed to Iraq and Afghanistan were impacted at energies of up to 518 J, using a spring-assisted drop rig. Results The results showed that the Meindl Desert Fox combat boot consistently experienced a lower peak force at lower impact energies and a longer time-to-peak force at higher impact energies when compared with the Lowa Desert Fox combat boot. Discussion This reduction in the peak force and extended rise time, resulting in a lower energy transfer rate, is a potentially positive mitigating effect in terms of the trauma experienced by the lower limb. Conclusion Currently, combat boots are tested under impact at the energies seen during heel strike in running. Through the identification of significantly different behaviours at high loading, this study has shown that there is rationale in adding the performance of combat boots under impact at energies above those set out in international standards to the list of criteria for the selection of a combat boot.
Resumo:
The conflicts in Iraq and Afghanistan have been epitomized by the insurgents’ use of the improvised explosive device against vehicle-borne security forces. These weapons, capable of causing multiple severely injured casualties in a single incident, pose the most prevalent single threat to Coalition troops operating in the region. Improvements in personal protection and medical care have resulted in increasing numbers of casualties surviving with complex lower limb injuries, often leading to long-term disability. Thus, there exists an urgent requirement to investigate and mitigate against the mechanism of extremity injury caused by these devices. This will necessitate an ontological approach, linking molecular, cellular and tissue interaction to physiological dysfunction. This can only be achieved via a collaborative approach between clinicians, natural scientists and engineers, combining physical and numerical modelling tools with clinical data from the battlefield. In this article, we compile existing knowledge on the effects of explosions on skeletal injury, review and critique relevant experimental and computational research related to lower limb injury and damage and propose research foci required to drive the development of future mitigation technologies.
Resumo:
Blast mats that can be retrofitted to the floor of military vehicles are considered to reduce the risk of injury from under‐vehicle explosions. Anthropometric test devices (ATDs) are validated for use only in the seated position. The aim of this study was to use a traumatic injury simulator fitted with 3 different blast mats in order to assess the ability of 2 ATD designs to evaluate the protective capacity of the mats in 2 occupant postures under 2 severities. Tests were performed for each combination of mat design, ATD, severity and posture using an antivehicle under‐belly injury simulator. The differences between mitigation systems were larger under the H‐III compared to the MiL‐Lx. There was little difference in how the 2 ATDs and how posture ranked the mitigation systems. Results from this study suggest that conclusions obtained by testing in the seated position can be extrapolated to the standing. However, the different percentage reductions observed in the 2 ATDs suggests different levels of protection. It is therefore unclear which ATD should be used to assess such mitigation systems. A correlation between cadavers and ATDs on the protection offered by blast mats is required in order to elucidate this issue.
Resumo:
The lower limb of military vehicle occupants has been the most injured body part due to undervehicle explosions in recent conflicts. Understanding the injury mechanism and causality of injury severity could aid in developing better protection. Therefore, we tested 4 different occupant postures (seated, brace, standing, standing with knee locked in hyper‐extension) in a simulated under‐vehicle explosion (solid blast) using our traumatic injury simulator in the laboratory; we hypothesised that occupant posture would affect injury severity. No skeletal injury was observed in the specimens in seated and braced postures. Severe, impairing injuries were observed in the foot of standing and hyper‐extended specimens. These results demonstrate that a vehicle occupant whose posture at the time of the attack incorporates knee flexion is more likely to be protected against severe skeletal injury to the lower leg.
Resumo:
Lower extremities are particularly susceptible to injury in an under‐vehicle explosion. Operational fitness of military vehicles is assessed through anthropometric test devices (ATDs) in full‐scale blast tests. The aim of this study was to compare the response between the Hybrid‐III ATD, the MiL‐Lx ATD and cadavers in our traumatic injury simulator, which is able to replicate the response of the vehicle floor in an under‐vehicle explosion. All specimens were fitted with a combat boot and tested on our traumatic injury simulator in a seated position. The load recorded in the ATDs was above the tolerance levels recommended by NATO in all tests; no injuries were observed in any of the 3 cadaveric specimens. The Hybrid‐III produced higher peak forces than the MiL‐Lx. The time to peak strain in the calcaneus of the cadavers was similar to the time to peak force in the ATDs. Maximum compression of the sole of the combat boot was similar for cadavers and MiL‐Lx, but significantly greater for the Hybrid‐III. These results suggest that the MiL‐Lx has a more biofidelic response to under‐vehicle explosive events compared to the Hybrid‐III. Therefore, it is recommended that mitigation strategies are assessed using the MiL‐Lx surrogate and not the Hybrid‐III.
Resumo:
Since World War I, explosions have accounted for over 70% of all injuries in conflict. With the development of improved personnel protection of the torso, improved medical care and faster aeromedical evacuation, casualties are surviving with more severe injuries to the extremities. Understanding the processes involved in the transfer of blast-induced shock waves through biological tissues is essential for supporting efforts aimed at mitigating and treating blast injury. Given the inherent heterogeneities in the human body, we argue that studying these processes demands a highly integrated approach requiring expertise in shock physics, biomechanics and fundamental biological processes. This multidisciplinary systems approach enables one to develop the experimental framework for investigating the material properties of human tissues that are subjected to high compression waves in blast conditions and the fundamental cellular processes altered by this type of stimuli. Ultimately, we hope to use the information gained from these studies in translational research aimed at developing improved protection for those at risk and improved clinical outcomes for those who have been injured from a blast wave.
Resumo:
Modern copyright law is based on the inescapable assumption that users, given the choice, will free-ride rather than pay for access. In fact, many consumers of cultural works – music, books, films, games, and other works – fundamentally want to support their production. It turns out that humans are motivated to support cultural production not only by extrinsic incentives, but also by social norms of fairness and reciprocity. This article explains how producers across the creative industries have used this insight to develop increasingly sophisticated business models that rely on voluntary payments (including pay-what-you-want schemes) to fund their costs of production. The recognition that users are not always free-riders suggests that current policy approaches to copyright are fundamentally flawed. Because social norms are so important in consumer motivations, the perceived unfairness of the current copyright system undermines the willingness of people to pay for access to cultural goods. While recent copyright reform debate has focused on creating stronger deterrence through enforcement, increasing the perceived fairness and legitimacy of copyright law is likely to be much more effective. The fact that users will sometimes willingly support cultural production also challenges the economic raison d'être of copyright law. This article demonstrates how 'peaceful revolutions' are flipping conventional copyright models and encouraging free-riding through combining incentives and prosocial norms. Because they provide a means to support production without limiting the dissemination of knowledge and culture, there is good reason to believe that these commons-based systems of cultural production can be more efficient, more fair, and more conducive to human flourishing than conventional copyright systems. This article explains what we know about free-riding so far and what work remains to be done to understand the viability and importance of cooperative systems in funding cultural production.
Resumo:
Biodiesel derived from microalgae is one of a suite of potential solutions to meet the increasing demand for a renewable, carbon-neutral energy source. However, there are numerous challenges that must be addressed before algae biodiesel can become commercially viable. These challenges include the economic feasibility of harvesting and dewatering the biomass and the extraction of lipids and their conversion into biodiesel. Therefore, it is essential to find a suitable extraction process given these processes presently contribute significantly to the total production costs which, at this stage, inhibit the ability of biodiesel to compete financially with petroleum diesel. This study focuses on pilot-scale (100 kg dried microalgae) solvent extraction of lipids from microalgae and subsequent transesterification to biodiesel. Three different solvents (hexane, isopropanol (IPA) and hexane + IPA (1:1)) were used with two different extraction methods (static and Soxhlet) at bench-scale to find the most suitable solvent extraction process for the pilot-scale. The Soxhlet method extracted only 4.2% more lipid compared to the static method. However, the fatty acid profiles of different extraction methods with different solvents are similar, suggesting that none of the solvents or extraction processes were biased for extraction of particular fatty acids. Considering the cost and availability of the solvents, hexane was chosen for pilot-scale extraction using static extraction. At pilot-scale the lipid yield was found to be 20.3% of total biomass which is 2.5% less than from bench scale. Extracted fatty acids were dominated by polyunsaturated fatty acids (PUFAs) (68.94±0.17%) including 47.7±0.43 and 17.86±0.42% being docosahexaenoic acid (DHA) (C22:6) and docosapentaenoic acid (DPA) (C22:5, ω-3), respectively. These high amounts of long chain poly unsaturated fatty acids are unique to some marine microalgae and protists and vary with environmental conditions, culture age and nutrient status, as well as with cultivation process. Calculated physical and chemical properties of density, viscosity of transesterified fatty acid methyl esters (FAMEs) were within the limits of the biodiesel standard specifications as per ASTM D6751-2012 and EN 14214. The calculated cetane number was, however, significantly lower (17.8~18.6) compared to ASTM D6751-2012 or EN 14214-specified minimal requirements. We conclude that the obtained microalgal biodiesel would likely only be suitable for blending with petroleum diesel to a maximum of 5 to 20%.
Resumo:
China’s biggest search engine has a constitutional right to filter its search results, a US court found last month. But that’s just the start of the story. Eight New York-based pro-democracy activists sued Baidu Inc in 2011, seeking damages because Baidu prevents their work from showing up in search results. Baidu follows Chinese law that requires it to censor politically sensitive results. But in what the plaintiffs’ lawyer has dubbed a “perfect paradox”, US District Judge Jesse Furman has dismissed the challenge, explaining that to hold Baidu liable for its decisions to censor pro-democracy content would itself infringe the right to free speech.
Resumo:
We introduce Claude Lévi Strauss' canonical formula (CF), an attempt to rigorously formalise the general narrative structure of myth. This formula utilises the Klein group as its basis, but a recent work draws attention to its natural quaternion form, which opens up the possibility that it may require a quantum inspired interpretation. We present the CF in a form that can be understood by a non-anthropological audience, using the formalisation of a key myth (that of Adonis) to draw attention to its mathematical structure. The future potential formalisation of mythological structure within a quantum inspired framework is proposed and discussed, with a probabilistic interpretation further generalising the formula
Resumo:
The Arabidopsis (Arabidopsis thaliana) orthologs of Brca2, a protein whose mutations are involved in breast cancer in humans, were previously shown to be essential at meiosis. In an attempt to better understand the Brca2-interacting properties, we examined four partners of the two isoforms of Brca2 identified in Arabidopsis (AtRad51, AtDmc1, and two AtDss1 isoforms). The two Brca2 and the two Dss1 isoforms are named AtBrca2(IV), AtBrca2(V), AtDss1(I), and AtDss1(V) after their chromosomal localization. We first show that both AtBrca2 proteins can interact with either AtRad51 or AtDmc1 in vitro, and that the N-terminal region of AtBrca2 is responsible for these interactions. More specifically, the BRC motifs (so called because iterated in the Brca2 protein) in Brca2 are involved in these interactions: BRC motif number 2 (BRC2) alone can interact with AtDmc1, whereas BRC motif number 4 (BRC4) recognizes AtRad51. The human Rad51 and Dmc1 proteins themselves can interact with either the complete (HsRad51) or a shorter version of AtBrca2 (HsRad51 or HsDmc1) that comprises all four BRC motifs. We also identified two Arabidopsis isoforms of Dss1, another known partner of Brca2 in other organisms. Although all four Brca2 and Dss1 proteins are much conserved, AtBrca2(IV) interacts with only one of these AtDss1 proteins, whereas AtBrca2(V) interacts with both of them. Finally, we show for the first time that an AtBrca2 protein could bind two different partners at the same time: AtRad51 and AtDss1(I), or AtDmc1 and AtDss1(I).
Resumo:
The SOS screen, as originally described by Perkins et al. (1999), was setup with the aim of identifying Arabidopsis functions that might potentially be involved in the DNA metabolism. Such functions, when expressed in bacteria, are prone to disturb replication and thus trigger the SOS response. Consistently, expression of AtRAD51 and AtDMC1 induced the SOS response in bacteria, even affecting E. coli viability. 100 SOS-inducing cDNAs were isolated from a cDNA library constructed from an Arabidopsis cell suspension that was found to highly express meiotic genes. A large proportion of these SOS+ candidates are clearly related to the DNA metabolism, others could be involved in the RNA metabolism, while the remaining cDNAs encode either totally unknown proteins or proteins that were considered as irrelevant. Seven SOS+ candidate genes are induced following gamma irradiation. The in planta function of several of the SOS-inducing clones was investigated using T-DNA insertional mutants or RNA interference. Only one SOS+ candidate, among those examined, exhibited a defined phenotype: silenced plants for DUT1 were sensitive to 5-fluoro-uracil (5FU), as is the case of the leaky dut-1 mutant in E. coli that are affected in dUTPase activity. dUTPase is essential to prevent uracil incorporation in the course of DNA replication.
Resumo:
The BRC repeat is a structural motif in the tumor suppressor BRCA2 (breast cancer type 2 susceptibility protein), which promotes homologous recombination (HR) by regulating RAD51 recombinase activity. To date, the BRC repeat has not been observed in other proteins, so that its role in HR is inferred only in the context of BRCA2. Here, we identified a BRC repeat variant, named BRCv, in the RECQL5 helicase, which possesses anti-recombinase activity in vitro and suppresses HR and promotes cellular resistance to camptothecin-induced replication stress in vivo. RECQL5-BRCv interacted with RAD51 through two conserved motifs similar to those in the BRCA2-BRC repeat. Mutations of either motif compromised functions of RECQL5, including association with RAD51, inhibition of RAD51-mediated D-loop formation, suppression of sister chromatid exchange, and resistance to camptothecin-induced replication stress. Potential BRCvs were also found in other HR regulatory proteins, including Srs2 and Sgs1, which possess anti-recombinase activities similar to that of RECQL5. A point mutation in the predicted Srs2-BRCv disrupted the ability of the protein to bind RAD51 and to inhibit D-loop formation. Thus, BRC is a common RAD51 interaction module that can be utilized by different proteins to either promote HR, as in the case of BRCA2, or to suppress HR, as in RECQL5.