935 resultados para Latency
Resumo:
In this paper, we describe an algorithm that automatically detects and labels peaks I - VII of the normal, suprathreshold auditory brainstem response (ABR). The algorithm proceeds in three stages, with the option of a fourth: ( 1) all candidate peaks and troughs in the ABR waveform are identified using zero crossings of the first derivative, ( 2) peaks I - VII are identified from these candidate peaks based on their latency and morphology, ( 3) if required, peaks II and IV are identified as points of inflection using zero crossings of the second derivative and ( 4) interpeak troughs are identified before peak latencies and amplitudes are measured. The performance of the algorithm was estimated on a set of 240 normal ABR waveforms recorded using a stimulus intensity of 90 dBnHL. When compared to an expert audiologist, the algorithm correctly identified the major ABR peaks ( I, III and V) in 96 - 98% of the waveforms and the minor ABR peaks ( II, IV, VI and VII) in 45 - 83% of waveforms. Whilst peak II was correctly identified in only 83% and peak IV in 77% of waveforms, it was shown that 5% of the peak II identifications and 31% of the peak IV identifications came as a direct result of allowing these peaks to be found as points of inflection. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
Objective: To examine the relationship between the auditory brain-stem response (ABR) and its reconstructed waveforms following discrete wavelet transformation (DWT), and to comment on the resulting implications for ABR DWT time-frequency analysis. Methods: ABR waveforms were recorded from 120 normal hearing subjects at 90, 70, 50, 30, 10 and 0 dBnHL, decomposed using a 6 level discrete wavelet transformation (DWT), and reconstructed at individual wavelet scales (frequency ranges) A6, D6, D5 and D4. These waveforms were then compared for general correlations, and for patterns of change due to stimulus level, and subject age, gender and test ear. Results: The reconstructed ABR DWT waveforms showed 3 primary components: a large-amplitude waveform in the low-frequency A6 scale (0-266.6 Hz) with its single peak corresponding in latency with ABR waves III and V; a mid-amplitude waveform in the mid-frequency D6 scale (266.6-533.3 Hz) with its first 5 waves corresponding in latency to ABR waves 1, 111, V, VI and VII; and a small-amplitude, multiple-peaked waveform in the high-frequency D5 scale (533.3-1066.6 Hz) with its first 7 waves corresponding in latency to ABR waves 1, 11, 111, IV, V, VI and VII. Comparisons between ABR waves 1, 111 and V and their corresponding reconstructed ABR DWT waves showed strong correlations and similar, reliable, and statistically robust changes due to stimulus level and subject age, gender and test ear groupings. Limiting these findings, however, was the unexplained absence of a small number (2%, or 117/6720) of reconstructed ABR DWT waves, despite their corresponding ABR waves being present. Conclusions: Reconstructed ABR DWT waveforms can be used as valid time-frequency representations of the normal ABR, but with some limitations. In particular, the unexplained absence of a small number of reconstructed ABR DWT waves in some subjects, probably resulting from 'shift invariance' inherent to the DWT process, needs to be addressed. Significance: This is the first report of the relationship between the ABR and its reconstructed ABR DWT waveforms in a large normative sample. (C) 2004 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Four experiments investigated the attentional modulation of acoustic blinks during continuous spatial tracking tasks. Experiment 1 found blink magnitude inhibition in a visual tracking task. Experiment 2 replicated this finding and also found blink latency slowing. Experiment 3 varied the difficulty of the task and found larger blink inhibition in the easy condition. Blink latency slowing did not differ and was significant at both difficulty levels. Experiment 4 employed less difficult visual and acoustic tracking tasks at two levels of task load. Blink magnitude inhibition during the visual and facilitation during the acoustic task was significant during high load in both modality groups. Blink latency was slowed in all visual task conditions and shortened in the difficult acoustic task. These results indicate that attentional blink modulation in a continuous spatial tracking task is modality specific.
Resumo:
The Appetitive Motivation Scale (Jackson & Smillie, 2004) is a new trait conceptualisation of Gray's (I 970 199 1) Behavioural Activation System. In this experiment we explore relationships that the Appetitive Motivation Scale and other measures of Gray's model have with Approach and Active Avoidance responses. Using a sample of 144 undergraduate students, both Appetitive Motivation and Sensitivity to Reward (from the Sensitivity to Punishment and Sensitivity to Reward Questionnaire, SPSRQ; Torrubia, Avila, Molto, & Ceseras, 2001), were found to be significant predictors of Approach and Active Avoidance response latency. This confirms previous experimental validations of the SPSRQ (e.g., Avila, 2001) and provides the first experimental evidence for the validity of the Appetitive Motivation scale. Consistent with interactive views of Gray's model (e.g., Corr, 2001), high SPSRQ Sensitivity to Punishment diminished the relationship between Sensitivity to Reward and our BAS criteria. Measures of BIS did not however interact in this way with the appetitive motivation scale. A surprising result was the failure for any of Carver and White's (1994) BAS scales to correlate with RST criteria. Implications of these findings and potential future directions are discussed. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Rise time and duration are two parametric characteristics of the eliciting stimulus frequently used to differentiate among psychophysiological reflexes. The present research varied the duration (study 1) and rise time (study 2) of an intense acoustic stimulus to dissociate cardiac defense and cardiac startle using the eyeblink response as the external criterion of startle. In each study, 100 participants were presented with five white noise stimuli of 105 dB under one of five duration (50, 100, 250, 500, and 1000 ms) or rise time (0, 24, 48, 96, and 240 ms) conditions. Cardiac defense was affected by stimulus duration, present only in the 500- and 1000-ms conditions, but not by stimulus rise time, present in all rise time conditions. Rise time affected blink startle, but did not selectively alter the short latency accelerative component of the heart rate response, thus questioning whether it reflects startle.
Resumo:
Objective: To use the over-complete discrete wavelet transform (OCDWT) to further examine the dual structure of auditory brainstem response (ABR) in the dog. Methods: ABR waveforms recorded from 20 adult dogs at supra-threshold (90 and 70 dBnHL) and threshold (0-15 dBSL) levels were decomposed using a six level OCDWT and reconstructed at individual scales (frequency ranges) A6 (0-391 Hz), D6 (391-781 Hz), and D5 (781-1563 Hz). Results: At supra-threshold stimulus levels, the A6 scale (0-391 Hz) showed a large amplitude waveform with its prominent wave corresponding in latency with ABR waves II/III; the D6 scale (391-781 Hz) showed a small amplitude waveform with its first four waves corresponding in latency to ABR waves I, II/III, V, and VI; and the D5 scale (781-1563 Hz) showed a large amplitude, multiple peaked waveform with its first six waves corresponding in latency to ABR waves I, II, III, IV, V, and VI. At threshold stimulus levels (0-15 dBSL), the A6 scale (0-391 Hz) continued to show a relatively large amplitude waveform, but both the D6 and D5 scales (391781 and 781-1563 Hz, respectively) now showed relatively small amplitude waveforms. Conclusions: A dual structure exists within the ABR of the dog, but its relative structure changes with stimulus level. Significance: The ABR in the dog differs from that in the human both in the relative contributions made by its different frequency components, and the way these components change with stimulus level. (c) 2006 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
The habituation to intense acoustic stimuli and the acquisition of differentially conditioned fear were assessed in 53 clinically anxious and 30 non-anxious control children and young adolescents. Anxious children tended to show larger electrodermal responses during habituation, but did not differ in blink startle latency or magnitude. After acquisition training, non-anxious children rated the CS + as more fear provoking and arousing than the CS- whereas the ratings of anxious children did not differ. However, anxious children rated the CS + as more fear provoking after extinction, a difference that was absent in non-anxious children. During extinction training, anxious children displayed larger blink magnitude facilitation during CS + and a trend towards larger electrodermal responses, a tendency not seen in nonanxious children. These data suggest that extinction of fear learning is retarded in anxious children. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
An affective priming task was used to examine bias in the processing of threat-related material in 25 clinically anxious compared to 25 matched, non-anxious control children and young adolescents. No significant differences were found between anxious and non-anxious children in terms of priming effects. However, age-related differences were found depending upon the valence of the target, independent of anxiety status. Both younger (7-10 years) and older (11-14 years) children showed faster response times to pleasant targets when they were preceded by a congruent compared to incongruent stimulus, consistent with a traditional priming effect. For threat target stimuli, older children showed no difference in response latency according to the congruency of the prime-target valence. Younger children, in contrast, showed a reverse priming effect for threat target stimuli, with slower response times for threat-congruent trials than for threat targets preceded by a pleasant prime. Possible explanations for developmental differences in the processing of threat-related material are discussed.
Resumo:
Spoken word production is assumed to involve stages of processing in which activation spreads through layers of units comprising lexical-conceptual knowledge and their corresponding phonological word forms. Using high-field (4T) functional magnetic resonance imagine (fMRI), we assessed whether the relationship between these stages is strictly serial or involves cascaded-interactive processing, and whether central (decision/control) processing mechanisms are involved in lexical selection. Participants performed the competitor priming paradigm in which distractor words, named from a definition and semantically related to a subsequently presented target picture, slow picture-naming latency compared to that with unrelated words. The paradigm intersperses two trials between the definition and the picture to be named, temporally separating activation in the word perception and production networks. Priming semantic competitors of target picture names significantly increased activation in the left posterior temporal cortex, and to a lesser extent the left middle temporal cortex, consistent with the predictions of cascaded-interactive models of lexical access. In addition, extensive activation was detected in the anterior cingulate and pars orbitalis of the inferior frontal gyrus. The findings indicate that lexical selection during competitor priming is biased by top-down mechanisms to reverse associations between primed distractor words and target pictures to select words that meet the current goal of speech.
Resumo:
Half of all cancers in the United States are skin cancers. We have previously shown in a 4.5-year randomized controlled trial in an Australian community that squamous cell carcinomas (SCC) but not basal cell carcinomas (BCC) can be prevented by regular sunscreen application to the head, neck, hands, and forearms. Since cessation of the trial, we have followed participants for a further 8 years to evaluate possible latency of preventive effect on BCCs and SCCs. After prolonged follow-up, BCC tumor rates tended to decrease but not significantly in people formerly randomized to daily sunscreen use compared with those not applying sunscreen daily. By contrast, corresponding SCC tumor rates were significantly decreased by almost 40% during the entire follow-up period (rate ratio, 0.62; 95% confidence interval, 0.38-0.99). Regular application of sunscreen has prolonged preventive effects on SCC but with no clear benefit in reducing BCC.
Resumo:
We have used a telerehabilitation system (eREHAB) to remotely assess acquired language disorders via the Internet. The system was used to establish a 128 kbit/s videoconference between two sites and allowed a remote language assessment to be conducted using the standardized Boston Diagnostic Aphasia Examination (BDAE). The system had the capacity to display text and images, and could play pre-recorded instructions to the participant via various built-in tools. A touch screen allowed tasks involving picture identification to be completed easily. Eighteen participants with a diagnosis of an acquired language disorder were simultaneously assessed using the eREHAB system, and in the traditional face-to-face manner by two speech pathologists. There was very high agreement between the two assessors, with weighted kappa scores of 0.8–1.0 for 88% of the sub-tests of the BDAE. There was also high agreement (80–100%) and high kappa scores (0.67–0.90) between assessors on the six rating scales relating to language characteristics. The agreement between the two assessors for the diagnosis of the type of aphasia was 83%. Limitations of the system related mainly to problems inherent in IP videoconferencing. The inability to maintain the preferred speed of 128 kbit/s for the duration of the videoconference and the resultant increase in video and audio breakup and latency affected the clinician’s ability to administer the BDAE with the same ease and accuracy as in face-to-face administration. These difficulties were exacerbated when participants presented with a moderate to severe language disorder, auditory comprehension deficits or significant hearing loss. Despite these limitations, a valid assessment of language disorder was found to be feasible via this telerehabilitation application.
Resumo:
Pseudowords with inconsistent vs. consistent spellings (e.g., nurch, with rhyme neighbours search, lurch & perch, vs. mish, with neighbours dish, wish) were presented with definitions for naming either twice or 6 times. In an oral spelling test, there were main and interactive effects of consistency and the number of training trials on accuracy and main effects only on response latency, with the improvement in accuracy from 2 to 6 training trials greater for the more poorly learned inconsistent items. Of most interest, the smaller effect of training on accuracy in the consistent condition was reliable; contrary to the most obvious prediction of dual route spelling models that the sublexical procedure should produce correct spellings for consistent items early in training. In a second task students wrote spellings of multisyllabic words containing unstressed indeterminate (schwa) vowels. In their errors on the schwa vowel, students showed sensitivity to the most common spelling overall but also they were influenced by differences in schwa spellings in English words as a function of the number of syllables and schwa position. These results indicate that dual route models of spelling will need to accommodate the consistency of spellings within categories defined by lexical structure variables.
Resumo:
In disorders such as sleep apnea, sleep is fragmented with frequent EEG-arousal (EEGA) as determined via changes in the sleep-electroencephalogram. EEGA is a poorly understood, complicated phenomenon which is critically important in studying the mysteries of sleep. In this paper we study the information flow between the left and right hemispheres of the brain during the EEGA as manifested through inter-hemispheric asynchrony (IHA) of the surface EEG. EEG data (using electrodes A1/C4 and A2/C3 of international 10-20 system) was collected from 5 subjects undergoing routine polysomnography (PSG). Spectral correlation coefficient (R) was computed between EEG data from two hemispheres for delta-delta(0.5-4 Hz), theta-thetas(4.1-8 Hz), alpha-alpha(8.1-12 Hz) & beta-beta(12.1-25 Hz) frequency bands, during EEGA events. EEGA were graded in 3 levels as (i) micro arousals (3-6 s), (ii) short arousals (6.1-10 s), & (iii) long arousals (10.1-15 s). Our results revealed that in beta band, IHA increases above the baseline after the onset of EEGA and returns to the baseline after the conclusion of event. Results indicated that the duration of EEGA events has a direct influence on the onset of IHA. The latency (L) between the onset of arousals and IHA were found to be L=2plusmn0.5 s (for micro arousals), 4plusmn2.2 s (short arousals) and 6.5plusmn3.6 s (long arousals)