999 resultados para Late nitrogen fertilization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Heart transplant rejection originates slow and fragmented conduction. Signal-averaged ECG (SAECG) is a stratification method in the risk of rejection. Objective: To develop a risk score for rejection, using SAECG variables. Methods: We studied 28 transplant patients. First, we divided the sample into two groups based on the occurrence of acute rejection (5 with rejection and 23 without). In a second phase, we divided the sample considering the existence or not of rejection in at least one biopsy performed on the follow-up period (rejection pm1: 18 with rejection and 10 without). Results: On conventional ECG, the presence of fibrosis was the only criterion associated with acute rejection (OR = 19; 95% CI = 1.65-218.47; p = 0.02). Considering the rejection pm1, an association was found with the SAECG variables, mainly with RMS40 (OR = 0.97; 95% CI = 0.87-0.99; p = 0.03) and LAS40 (OR = 1.06; 95% IC = 1.01-1.11; p = 0.03). We formulated a risk score including those variables, and evaluated its discriminative performance in our sample. The presence of fibrosis with increasing of LAS40 and decreasing of RMS40 showed a good ability to distinguish between patients with and without rejection (AUC = 0.82; p < 0.01), assuming a cutoff point of sensitivity = 83.3% and specificity = 60%. Conclusion: The SAECG distinguished between patients with and without rejection. The usefulness of the proposed risk score must be demonstrated in larger follow-up studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Naturwiss., Diss., 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the preliminary results of a sand culture experiment carried out to obtain physiological bases to study the fertilization of cassava in the State of São Paulo. On the other hand, the authors are interested in the possible influence of mineral nutrients in the quantity and quality of starch. Cassava (Manihot utilissima Pohl.), "Branca de Sta. Catarina" variety, was grown under the following treatments: NO PO KO, NO P1 K1, N1 P0 Kl, NI P1K0, N2 p1 Kl N1 P2 K1 and N1 P1 K2. A striking response to phosphorus was observed among the treatments. However, once secured the necessary phosphoric level to the plant, the production becomes limited by nitrogen; in other words, increase in yield can be accomplished only by raising the nitrogenous level. The present results suggest that the remarkable effects of phosphates applied to cassava cultures in the State of São Paulo are due not only to the poor quality of our soils, as far phosphorus is concerned: we are facing a positive physiological response showed by the plant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The present work was carried out to study the effects of mineral nutrients in the yield as well as in the composition of cassava roots. The variety "Branca de Sta. Catarina" was grown by the sand culture method, the following treatments being used: N0 P0 K0, N0 P1 Kl, N1 P0 K1, N2 P1 K0, N2 P1 K1, N1 P2 K1, and N1 P1 K2, where the figures 0, 1, and 2 denote the relative proportion of a given element. The nutrients were given as follows: N = 35 grams of ammonium nitrate per pot loaded with 120 pounds of washed sand; P1 = 35 grams of monocalcium phosphate; Kl = 28 grams of sulfate of potash. Besides those fertilizers, each pot received 26 grams of magnesium sulfate and weekly doses of micronutrients as indicated by HOAGLAND and ARNON (1939). To apply the macronutrients the total doses were divided in three parts evenly distributed during the life cycle of cassava. 2. As far yield of roots and foliage are concerned, there are a few points to be considered: 2.1. the most striking effect on yield was verified when P was omitted from the fertilization; this treatment gave the poorest yields of the whole experiment; the need of that element for the phosphorylation of the starchy reserves explains such result; 2.2. phosphorus and nitrogen, under the experimental conditions, showed to be the most important nutrients for cassava; the effect of potassium in the weight of the roots produced was much less marked; it is noteworthy to mention, that in absence of potassium, the roots yield decreased whereas the foliage increased; as potassium is essential for the translocation of carbohydrates it is reasonable to admit that sugars produced in the leaves instead of going down and accumulate as starch in the roots were consumed in the production of more green matter. 3. Chemical analyses of roots revealed the following interesting points: 3.1. the lack of phosphorus brought about the most drastic reduction in the starch content of the roots; while the treatment N1 P1 K1 gave 32 per cent of starch, with NI PO Kl the amount found was 25 per cent; this result can be explained by the requirement of P for the enzymatic synthesis of starch; it has to be mentioned that the decrease in the starch content was associated with the remarkable drop in yield observed when P was omitted from the nutrient medium; 3.2. the double dosis of nitrogen in the treatment N2 P1 K1, gave the highest yields; however the increase in yield did not produce any industrial gain: whereas the treatment N1 P1 K1 gave 32 per cent of starch, by raising the N level to N2, the starch content fell to 24 per cent; now, considering the total amount of starch present in the roots, one can see, that the increase in roots yield did not compensate for the marked decrease in the starch content; that is, the amount of starch obtained with N1 P1 K1 does not differ statistically from the quantity obtained with N2 P1 K1; as far we know facts similar to this had been observed in sugar beets and sugar cane, as a result of the interaction between nitrogen and sugar produced; the biochemical aspect of the problem is very interesting: by raising the amount of assimilable nitrogen, instead of the carbohydrates polymerize to starch, they do combine to the amino groups to give proteinaceous materials; actually, it did happen that the protein content increased from 2.91 to 5.14 per cent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kikuio grass (Pennisetum clandestinum Hochst) is beyond any doubt, a pasture very important for farm animals; since its chemical composition is very similar to that of alfalfa, the present field trial was carried out; a randomized block design with 8 treatments was selected as follows: 1 N - P - K - Ca - Mg (complete manuring) 2 N - P - K - Ca----- (without Mg) 3 N - P - K-------Mg (without Ca) 4 ----P - K - Ca - Mg (without N) 5 N------K - Ca Mg (without P) 6 N - P - Ca - Mg (without K) 7 organic matter (without mineral fertilizers) 8 control Nitrogen was applied as NaN03 (topdressed) and as ammonium sulfate; P2O5 was given as superphosphate associated to bonemeal; K2O was applied as muriate, CaO as "sambaquis" (oyster shells); MgO was given as MgSO4 (topdressed). The source of organic matter was farmyard manure. As far yields are concerned the following observations were made: 1. treatment n. 7 was superior to all others; 2. considering the mineral fertilizers, good responses were due to N and P2O5; 3. the control yield was exceedingly poor, being inferior to all the others treatments; The chemical analyses revealed that: 1. the protein content decreased accordingly to this order: 7, 6, 5 and 1; treatment 4 (without N) gave the lowest protein content; 2. treatment n. 4 produced the highest fat content; treatment no. 7 ranked second; no. 8 gave the lowest fat content; 3. crude fiber: highest - treatment 7; lowest - 8; 4. ashes: the ashes content was higher in treatment 5; proprobably because the most abundant element in the ashes is K, the ash content of treatment 6 (no K) was very low; 5. non nitrogenous substances (determined by difference) - high in treatment 8 and low in treatment 7; 6. mineral elements in the ashes - the element omitted from a given treatment was very low in the grasses therein obtained; this shows the relative poverty of the soil in that element. As general remark the Authors suggest the use of farmyard manure in the fertilization of Kikuio grass; farmyard manure could probably substitute wither green manure or compost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors discuss a formula for the determination of the most profitable level of fertilization (x*). This formula, presented by CAREY and ROBINSON (1953), can be written as: x*= (1/c) log cx u L10 + (1/c) log wu _______ ___ 1-10 x u t being c the growth factor in Mitscherlich's equation, x u a standard dressing of the nutrient, L 10 the Naeperian logarithm of 10, u the response to the standard dressing, w the unit price of the crop product, and i the unit price of the nutrient. This formula is a modification of one of the formulas of PIMENTEL GOMES (1953). One of its advantages is that is does not depend on A, the theoretical maximum harvest, which is not directly given by experimental data. But another advantage, proved in this. paper, is that the first term on the right hand side K= 1(/c) log cx u L 10 ____________ 1 - 10-cx u is practically independent of c, and approximately equivalent to (1/2) x u. So, we have approximately x* = (1/2) x u + (1/c) log wu . ____ x u t With experimental data we compute z = wu ____ x u t then using tables 1, 2 and 3, we may obtain Y - (1/c) log z and finally x* = (1/2) x u + Y. This is an easy way to determine the most profitable level of fertilization when experimental data on the response u to a dressing x u are available. Tables for the calculation of Y are included, for nitrogen, phosphorus, potash, and manure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cotton (variety I. A. C. 11) was grown on a sandy soil under two treatments, namely: (1) NPK + lime and (2) no fertilizers. Three weeks after planting a systematic sampling of entire plants was done every other week. In the laboratory determinations of dry weight were made and afterwards the various plant partes were submitted to chemical analyses, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S) being determined. The aim of this work was to obtain information on the periods in which the absorption of the several macronutrients was more intense, this providing a clue for time of application of certain mineral fertilizers. Data obtained hereby allowed for the following main conclusions. The initial rate of growth of the cotton plant, judged by the determinations of dry weight, is rather slow. Seven weeks after planting and again five weeks two distinct periods of rapid growth take place. The uptake of macronutrients is rather small until the first flowers show up. From there on the absorption of minerals is intensified. From the time in which fruits are being formed to full maturity, the crop draws from the soil nearly 75 percent of the total amount of elements required to complet life cycle. This seams to point out the need for late dressings of fertilizers, particularly of those containing N and K. The following amounts of element in Kg/ha were absorbed by the fertilized plants: N - 83.2 P - 8.1 K - 65.5 Ca - 61.7 Mg - 12.8 and S - 33.2. The three major macronutrients, namely, N. P and K are exported as seed cotton in the following proportions with respect to the total amounts taken up by the entire crop: N - 1/3, P - 1/2 and K - 1/3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O atual conhecimento relativo à distribuição em percentagem das várias frações de enxofre nos solos provem principalmente dos estudos dos solos de regiões temperadas. Em vista disso, este estudo foi conduzido para determinar as frações do S e as relações C-N-P-S em alguns solos da região subtropical dos Estados de São Paulo e do Paraná, Brasil, e comparar estes valores nestes solos com aqueles nos solos do Estado de Iowa, dos Estados Unidos da América do Norte. As análises das frações de enxofre nos solos dos dois países, indicaram que os solos do Brasil contem sulfato inorgânico adsorvido. Expressos como percentagem do S total, os solos do Brasil acusaram de 5 a 23% (média 11%) de S-sulfato inorgânico, de 20 a 65% (média 40%) de S-ester sulfato, de 5 a 12% (média 7%) de S-ligado ao Carbono e de 24 a 59% (média 42%) de S orgânico não identificado. As percentagens correspondentes nos solos de Iowa foram de 2 a 8% (média 5%) de S-sulfato inorgânico, de 43 a 60% (média 50%) de S-ester sufato, de 7 a 18% (média 11%) de enxofre ligado ao carbono e de 30 a 39% (média 34%) de S orgânico, não identificado. Outrossim, não foi encontrado o enxofre inorgânico não-sulfato em nenhum dos solos analisados. Houve grandes variações nas relações C, N, Ρ e S entre solos brasileiros quando comparados com aqueles do Iowa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A localização do superfosfato (marcado com P32) no maracujá em produção foi estudada em condições de plantação comercial. Verificou-se que as aplicações em sulcos circulares ou faixas superficiais ao redor da planta tem eficiência equivalente sendo esses métodos três vezes superiores à localização do adubo em furos no solo. A pulverização foliar, por sua vez, mostrou-se 20 vezes mais eficiente que a aplicação no solo de acordo com os dois primeiros métodos.