983 resultados para Land capability for agriculture
Resumo:
Although during much of its geologic history Iowa was part of an interior sea, today what we see on the land surface has been heavily influenced by recent glaciation. Everything from Iowa soils, rivers, lakes, and hills has been influenced by glaciation. Most of Iowa’s bedrock is hidden beneath a thick mantle of deposits from the Cenozoic (i.e., new life) Era, spanning the last 65 million years. Geologists have divided the Cenozoic Era into two periods. These are the Tertiary (1.8-65 million years ago) and Quaternary Periods (recent to 1.8 million years ago). Most geologic records in Iowa are from the Quaternary period, and include glacial till and loess.
Resumo:
Today’s ride departs Ames and heads towards Nevada. The Ames area is one of the classic areas to view elongated hummocks. These landforms are discontinous, lower relief curvilinear ridges which are east-west trending features. At one time geologists thought these hummocks formed at the base of the glacier due to glacial movement. It is now understood that these features may have developed within the glacier, in a large crevasse field that formed behind the ice (Bemis Moraine) margin as the ice stagnated and melted.
Resumo:
Today, after you descend into the valley of the Iowa River north of Marengo, the route turns east on county road F15 and approaches the historic Amana Society. Settled in the late 1850s by German immigrants of the Community of True Inspiration, the new arrivals utilized the local timber and stone resources to construct their buildings. During these early years several stone quarries were opened in the hills along the north wall of the Iowa River valley near East, Middle, and West Amana. Riders will pass close to one of these old quarries 0.7 miles west of West Amana. The stone taken from these quarries is beautiful quartz-rich sandstone that is cemented by light brown to orange tinged iron oxide. This stone was used in the construction of many buildings in Amana.
Resumo:
Today you will be biking over the Iowa and Cedar rivers, two major rivers hit by the Iowa flood of 2008. Three miles northeast of North Liberty you’ll cross the Iowa River. The river crested on June 15, 2008 at a record 31.53 ft., three feet higher than the previous record during the flood of 1993. The flooding river caused extensive damage to the University of Iowa (see cover photo of Iowa Memorial Union taken by Univ. Relations, Univ. of Iowa), Coralville, and numerous smaller towns. The flooding of the Cedar River, which RAGBRAI will cross at Sutliff, caused even greater damage. At Cedar Rapids, the 2008 flood crest of 31.12 ft. was over 11 ft. higher than the previous record set in 1851! This massive amount of water inundated downtown Cedar Rapids, Palo, and Columbus Junction and caused massive damage to buildings and infrastructure. When crossing the Cedar River at Sutliff, be sure to look to your right to see the remains of the Historic Sutliff Bridge, one of the many casualties of the Iowa flood of 2008.
Resumo:
Iowa’s land was mapped long before it was declared a state. Since Lewis and Clark published their journey across the North American west in 1814, many different uses for maps have been found. Today there are maps of Iowa’s roads, waterways, landscape features, geology, and land use. One of the more recent mapping efforts has involved using a technology called LiDAR. This technology creates a topographic map of Iowa’s elevation that is accurate to within eight inches, ten times higher resolution than in previous elevation maps.
Resumo:
Newsletter produced by Department of Agriculture and Land Stewardship about the animal industry in Iowa.
Resumo:
A newsletter produced by Iowa Department of Agriculture and Land Stewardship about the changes of organic farming and raising livestock in Iowa.
Resumo:
A newsletter produced by Iowa Department of Agriculture and Land Stewardship about the changes of organic farming and raising livestock in Iowa.
Resumo:
A newsletter produced by Iowa Department of Agriculture and Land Stewardship, this information is all about Iowa growers, what is new, what is going on around Iowa for growing.
Resumo:
A newsletter produced by Iowa Department of Agriculture and Land Stewardship, About strawberries, best time to plant, when to pick, etc.
Resumo:
A newsletter produced by Iowa Department of Agriculture and Land Stewardship, all about the Farmers Markets in Iowa.
Resumo:
A newsletter produced by Iowa Department of Agriculture and Land Stewardship. The DSC is responsible for state leadership in the protection and management of soil, water and mineral resources, assisting soil and water conservation districts and private landowners to meet their agricultural and environmental protection needs.
Resumo:
A newsletter produced by Iowa Department of Agriculture and Land Stewardship. The Conservation Reserve Enhancement Program for the state of Iowa.
Resumo:
Dryland agriculture in Cabo Verde copes with steep slopes, inadequate practices, irregular intense rain, recurrent droughts, high runoff rates, severe soil erosion and declining fertility, leading to the inefficient use of rainwater. Maize and beans occupy N80% of the arable land in low-input, low-yielding subsistence farming. Three collaborative field trialswere conducted in different agroecological zones to evaluate the effects ofwater-conservation techniques (mulching of crop residue, a soil surfactant and pigeon-pea hedges) combinedwith organic amendments (compost and animal or green manure) on runoff and soil loss. During the 2011 and 2012 rainy seasons, three treatments and one control (traditional practice) were applied to 44- and 24-m2 field plots. A local maize variety and two types of beanswere planted. Runoff and suspended sedimentswere collected and quantified after each daily erosive rainfall. Runoff occurred for rainfalls≥50mm(slope b10%, loamy Kastanozem),≥60mm(slope≤23%, silt–clay–loam Regosol) and≥40mm(slope≤37%, sandy loam Cambisol). Runoffwas significantly reduced only with themulch treatment on the slope N10% and in the treatment of surfactant with organic amendment on the slope b10%. Soil loss reached 16.6, 5.1, 6.6 and 0.4 Mg ha−1 on the Regosol (≤23% slope) for the control, surfactant, pigeon-pea and mulch/pigeon-pea (with organic amendment) treatments, respectively; 3.2, 0.9, 1.3 and 0.1 Mg ha−1 on the Cambisol (≤37% slope) and b0. 2Mg ha−1 for all treatments and control on the Kastanozem(b10% slope). Erosion was highly positively correlated with runoff. Mulch with pigeon-pea combinedwith an organic amendment significantly reduced runoff and erosion fromagricultural fields on steep slopes, contributing to improved use of rainwater at the plot level. Sustainable land management techniques, such as mulching with pigeon-pea hedges and an organic amendment, should be advocated and promoted for the semiarid hillsides of Cabo Verde prone to erosion to increase rainwater-use and to prevent further soil degradation.
Resumo:
Cape Verde is considered part of Sahelian Africa, where drought and desertification are common occurrences. The main activity of the rural population is rain-fed agriculture, which over time has been increasingly challenged by high temporal and spatial rainfall variability, lack of inputs, limited land area, fragmentation of land, steep slopes, pests, lack of mechanization and loss of top soil by water erosion. Human activities, largely through poor farming practices and deforestation (Gomez, 1989) have accelerated natural erosion processes, shifting the balance between soil erosion and soil formation (Norton, 1987). According to previous studies, vegetation cover is one of the most important factors in controlling soil loss (Cyr et al., 1995; Hupy, 2004; Zhang et al., 2004; Zhou et al., 2006). For this reason, reforestation is a touchstone of the Cape Verdean policy to combat desertification. After Independence in 1975, the Cape Verde government had pressing and closely entangled environmental and socio-economic issues to address, as long-term desertification had resulted in a lack of soil cover, severe soil erosion and a scarcity of water resources and fuel wood. Across the archipelago, desertification was resulting from a variety of processes including poor farming practices, soil erosion by water and wind, soil and water salinity in coastal areas due to over pumping and seawater intrusion, drought and unplanned urbanization (DGA-MAAP, 2004). All these issues directly affected socio-economic vulnerability in rural areas, where about 70% of people depended directly or indirectly on agriculture in 1975. By becoming part of the Inter- State Committee for the Fight against Drought in the Sahel in 1975, the government of Cape Verde gained structured support to address these issues more efficiently. Presentday policies and strategies were defined on the basis of rational use of resources and human efforts and were incorporated into three subsequent national plans: the National Action Plan for Development (NDP) (1982–1986), the NDP (1986–1990) and the NDP (1991–1995) (Carvalho